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Abstract: We investigate boundary dynamics of orbifold conformal field theory involv-

ing T-duality twists. Such models typically appear in contexts of non-geometric string

compactifications that are called monodrofolds or T-folds in recent literature. We use the

framework of boundary conformal field theory to analyse the models from a microscopic

world-sheet perspective. In these backgrounds there are two kinds of D-branes that are

analogous to bulk and fractional branes in standard orbifold models. The bulk D-branes

in T-folds allow intuitive geometrical interpretations and are consistent with the classical

analysis based on the doubled torus formalism. The fractional branes, on the other hand,

are ‘non-geometric’ at any point in the moduli space and have not been considered in the

doubled torus analysis so far. We compute cylinder amplitudes between the bulk and frac-

tional branes, and find that the lightest modes of the open string spectra show intriguing

non-linear dependence on the moduli (location of the brane or value of the Wilson line),

suggesting that the physics of T-folds, when D-branes are involved, could deviate from

geometric backgrounds even at low energies. We also extend our analysis to the models

with SU(2) WZW fibre at arbitrary levels.
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1. Introduction and summary

Recently much attention has been focused on a class of string backgrounds that involve

duality twists [1 – 6]. These backgrounds are formulated as fibrations over a base manifold

in which the transition functions are built from discrete duality transformations over and

above the standard continuous (diffeomorphism and gauge) transformations, so that the

fibre picks up non-trivial monodromies as it goes around cycles on the base. As the dualities
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are no less fundamental symmetries of the theory than the diffeo and gauge symmetries it

is natural to suppose that these are as good backgrounds for strings as standard manifold

backgrounds (‘geometric backgrouds’). In recent literature such backgrounds are called

‘monodrofolds’ [2] or, when the duality used in the construction is T-duality, ‘T-folds’ [1]

in particular. In the present paper we shall be concerned only with T-folds.

T-folds are an example of non-geometric backgrounds and have features that differ

from ordinary manifold backgrounds. For instance the metric and the Kalb-Ramond field

are not defined globally since T-duality mixes these two. For T-folds of d-torus fibrations

over a base manifold B there exists a very useful framework known as the doubled-torus

formalism, developed in [1]. This is to construct from the original T-fold an enlarged space

T d⊗T̃ d⊗B where T̃ d (with coordinates X̃ = XL−XR) is T-dual to T d (withX = XL+XR).

In the enlarged space the T-duality group O(d, d; Z) acts linearly. The doubled torus is

geometric and is considered as the collection of all possible T-duals associated with a given

T-fold. A T-fold is obtained from the doubled torus by projecting out redundant degrees

of freedom. The choice of physical degrees of freedom is called polarisation in [1]. The

equations of motion of a T-fold are recovered from the doubled torus using appropriate

constraints; hence the doubled torus with appropriate polarisation and the original T-fold

are equivalent at classical level. Classical T-fold backgrounds are also related to Hitchin’s

generalised complex geometry [7 – 9]. See [10, 11] for recent studies.

In string theory the space-time arises, in principle, as a consequence of the string

world-sheet dynamics. In particular, when studying non-geometric backgrounds that are

somewhat beyond our intuitive understanding of spacetime, the world-sheet theory is ex-

pected to provide rich information beyond the supergravity approximation. The world-

sheet of T-folds is known to be described by conformal field theory (CFT) of asymmetric

orbifolds [12]. These are subject of recent intensive study motivated by phenomenological

interests, as they give rise to various models of non-supersymmetric string backgrounds

with vanishing [13, 14] or exponentially suppressed [15] cosmological constant. An elemen-

tary check of legitimacy of such CFT is whether the model preserves modular invariance at

one-loop level. In stark contrast to the symmetric cases the level-matching in asymmetric

orbifolds is not automatic and the one-loop partition functions often fail to be modular

invariant. As observed in [13] it is nevertheless possible to construct consistent models of

asymmetric orbifold in which the modular invariance is recovered by cancellation of level

mismatch. The authors of [16] re-consider this issue in the context of T-folds. We review

these technical details in section 2.

D-branes are essential in studying various non-perturabative aspects of string back-

grounds, such as dual gauge theory, meta-stable vacua, and string duality. They can also

be used as a probe to analyse the geometry of the background. D-branes on T-fold back-

grounds are constructed and analysed in the doubled-torus picture in [17], where classical

D-brane spectrum consistent with the O(d, d; Z) monodromy was found in the model of T d

fibrations over S1. In the present paper we study D-branes in a simple model of T-fold in

the framework of world-sheet orbifold CFT, which would be complementary to [17]. There

are earlier work on D-branes in (different models of) asymmetric orbifolds, see e.g. [18, 19].

Our findings are summarised as follows:
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1. We analyse D-brane spectrum in the T-fold model of S1 fibration over S1 base. There

are D-branes (bulk branes) that have geometric counterparts in the doubled picture.

They are identified with those found in [17].

2. Furthermore, we also find D-branes involving the twisted sector (fractional branes),

which are expected but not concretely constructed in [17]. Computing overlaps re-

veals that both bulk and fractional branes satisfy Cardy conditions and hence they

coexist in the T-fold background. We find the mass of an open string stretched be-

tween the bulk and fractional branes shows intriguing non-linear dependence on the

moduli.

3. We extend the analysis to T-fold models with SU(2)k fibration over S1 and find

similar results.

The plan of the rest of the paper is as follows. In the next section we describe the

S1 over S1 model of T-fold CFT by reviewing discussions of [20, 16, 21]. In section 3 we

discuss D-branes in this background; we construct boundary states of bulk and fractional

branes, check their modular consistency (Cardy conditions) and discuss their properties. In

section 4 we consider world-sheet fermions, and in section 5 we generalise our discussions to

models with SU(2) Wess-Zumino-Witten (WZW) fibre, and conclude with some comments.

Summary of formulae as well as technical issues are relegated to 4 appendices.

Throughout this paper we use the convention of α′ = 1.

2. The world-sheet CFT

The example of T-fold that we shall consider in this section and the next is a circle fibration

over a base of another circle, with the transition function being the T-dualisation so that

the fibre transforms into its T-dual as it moves around the base [20, 16, 21] (also, Chap.18

of [22]). We set the radius of the base circle to be R and that of the fibre circle to be at self-

dual: R′ = 1, so as to make it possible to gauge the T-duality symmetry. The fibre and the

base coordinates are respectively X(z, z̄) = XL(z) +XR(z̄) and Y (z, z̄) = YL(z) + YR(z̄).

The T-dualised fibre coordinates are X̃(z, z̄) = XL(z) − XR(z̄). The T-fold is defined as

an ‘interpolating orbifold’ on the covering space S1
1 × S1

2R, whose orbifold action is the

T-duality transformation on the fibre accompanied by the half shift along the base circle:1

Y → Y + 2πR. (2.1)

In [20] it is discussed that the naive T-duality action

T : X = (XL,XR) → X̃ = (XL,−XR), (2.2)

1It is shown in [21] that the doubled formalism [1, 3] (see also [21, 23 – 25]) may be used to obtain the

same one-loop partition function of this T-fold model. In this paper, however, we shall not use the doubled

torus formalism.
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leads to difficulty in modular invariance of the one-loop partition function.2 A reasonable

remedy for this is proposed in [16], by implementing an appropriate shift in XL that ren-

ders the partition function of the asymmetric orbifold into essentially that of a (modular

invariant) symmetric orbifold. Similar construction of various T-duality orbifolds is dis-

cussed already in [13 – 15, 27, 28]. In this section we review the computation of the modular

invariant one-loop partition function. The system has central charge c = 2 and may be

considered as a part of critical bosonic string theory. We will not mention the other c = 24

components below, however.

2.1 Locality of vertex operators and T-duality

Before discussing the partition function, we present the argument [16] on how the T-duality

should act on vertex operators in a way consistent with locality. To make things simple we

focus only on the fibre part. Consider the vertex operator,

VkL,kR
(z, z̄) = CkL,kR

: eikLXL+ikRXR : . (2.3)

The cocycle factor CkL,kR
is defined as3

CkL,kR
≡ eπiwn̂. (2.4)

We denote the momentum and winding number operators with hats n̂, ŵ to distinguish

them from corresponding numbers (eigenvalues) n and w. They are related to the left and

right moving momentum operators by

p̂L = n̂+ ŵ, p̂R = n̂− ŵ. (2.5)

The eigenvalues for the operators p̂L and p̂R are kL and kR. We use round brackets to

write the vertex operator (2.3) in terms of a pair of integers n and w instead of kL and kR,

V(n,w)(z, z̄) = VkL,kR
(z, z̄). (2.6)

The cocycle has been included to make these vertex operators mutually local,

VkL,kR
(z, z̄)Vk′

L
,k′

R
(z′, z̄′) = Vk′

L
,k′

R
(z′, z̄′)VkL,kR

(z, z̄). (2.7)

The vertex operator dual to (2.3) under the (naive) T-operation (2.2) would then be

T : VkL,kR
(z, z̄) → eπiwŵ : eikLXL(z)−ikRXR(z̄) := eπiñŵ : eik̃LXL(z)+ik̃RXR(z̄) :≡ Ṽk̃L,k̃R

(z, z̄).

(2.8)

2The failure of modular invariance originates from treating the naive T -operator (2.2) as an order 2

automorphism, which is not the case. Indeed, as we will see later, one can still construct a modular

invariant partition function of the interpolating orbifold based on T ⊗T2πR, which has an order 16 orbifold

structure (the fact that we should have an order 16 orbifold originates from the level mismatch 1/16 in

the twisted sector). See also [26]. However, we shall concentrate on the ‘improved’ T-duality operator T ′

(or T ′′) defined later, since it is truly an order 2 automorphism and consistent with the locality of vertex

operators.
3Our conventions follow [22]. The authors of [16] use a different convention with an extra factor

exp(− 1
2
πinw) but the difference is not essential in subsequent discussions.
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Here k̃L ≡ n+ w = kL, k̃R ≡ w − n = −kR, and ñ ≡ w, w̃ ≡ n. Note that the T-dualised

cocycle factor appearing in (2.8), C̃k̃L,k̃R
≡ eπiñŵ, differs from the original one (2.4). The

operators VkL,kR
and Ṽk′

L
,k′

R
are not mutually local when wn′ + nw′ ∈ 2Z + 1, as can be

seen from their operator product

VkL,kR
(z, z̄)Ṽk′

L
,k′

R
(z′, z̄′) = eπi(wn′+nw′)Ṽk′

L
,k′

R
(z′, z̄′)VkL,kR

(z, z̄). (2.9)

This would not cause any problem were we dealing with two separate theories that are

T-dual to each other. In the case of T-fold, however, we encounter such cross operator

products and their non-locality indicates inconsistency of the model; in order to construct

a sensible model we need to make the product (2.9) local. This can be accomplished by

including the appropriate factor of eπin̂ŵ [16] into the definition of the T-duality transfor-

mation.4 This ‘improved’ T-transformation (which we shall denote by T ′) acts on states as

T ′ : |n,w,N i, N̄ i〉 → (−1)
P

N̄ i

eiπn̂ŵ|w,n,N i, N̄ i〉, (2.10)

where N i and N̄ i are the left and right occupation numbers. For the vertex operators, this

operates as

T ′ : V(n,w)(z, z̄) → e−iπnweiπw̃n̂ : eik̃LXL+ik̃RXR := e−iπnwV(w,n)(z, z̄). (2.11)

Thus the improved T-operator T ′ acts on vertex operators as n ↔ w while keeping the

cocycle factor C unchanged up to a C-number phase; this assures the mutual locality of

vertex operators.

We also note that T ′ is actually involutive, (T ′)2 = 1, on the whole Hilbert space,

whereas T is not. This is because T is interpretable as operator (1, eiπJ̄1
0 ) in terms of the

SU(2)1 current Ja characterizing the self-dual compact boson (note that e2πiJ1
0 6= 1; it

generates a non-trivial phase).

2.2 The T-fold as an orbifold

We defined the world-sheet CFT of the T-fold as an asymmetric orbifold on the covering

space S1
1 × S1

2R, with order 2 orbifolding group G = {I, σ} where I is the identity and σ is

T-dualisation of the fibre combined with the half shift in (the covering space of) the base

T2πR: Y → Y + 2πR. The computation of the one-loop T-fold partition function then

follows the standard theory of orbifold,

ZT-fold(τ, τ̄ ) =
1

|G|
∑

g,h∈G

h �
g

(τ, τ̄ ) =
1

2

(
I �

I
+σ �

I
+I �

σ
+σ �

σ

)
. (2.12)

As the Virasoro zero-modes are sums of the fibre and base parts L0 = Lfibre
0 + Lbase

0 ,

L0 = L
fibre
0 + L

base
0 , the partition trace in each sector sector-wise splits into the base and

fibre parts,
h �

g
(τ, τ̄) = Tr

Hg

hqL0− 1
12 q̄L0− 1

12 = Zbase
[g,h](τ, τ̄ )Z

fibre
[g,h] (τ, τ̄ ), (2.13)

4In [23] relation between this factor and a topological term in the supergravity description is discussed.
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where

Zbase
[g,h] = Tr

Hbase
g

hqLbase
0 − 1

24 q̄L
base
0 − 1

24 , (2.14)

Zfibre
[g,h] = Tr

Hfibre
g

hqLfibre
0 − 1

24 q̄L
fibre
0 − 1

24 . (2.15)

Here HI (Hσ) is the Hilbert space of the untwisted (twisted) sector.

2.3 The fibre part of the partition function

Below we describe an explicit computation of (2.15) in the operator (rather than path-

integral) formalism. This is essentially the modular orbit completion [29, 26] using the

orbifolding group that has been spelled out in (2.10). We first look at the untwisted

Hilbert space with no twist insertion, Zfibre
[I,I] . The Virasoro zero-modes in this sector can

be written using the number operators N̂k = 1
ka−kak and N̂k = 1

k ā−kāk (ak and āk are the

mode operators of XL and XR) as

Lfibre,U
0 =

∞∑

k=1

kN̂k +
1

4
(n̂+ ŵ)2 ,

L
fibre,U
0 =

∞∑

k=1

kN̂k +
1

4
(n̂− ŵ)2 . (2.16)

The Hilbert space Hfibre
I is

Hfibre
I =

⊕

Np,N̄q

⊕

n,w

aN1
−1a

N2
−2 · · · āN̄1

−1ā
N̄2
−2 · · · |(n,w)〉, (2.17)

with Np and N̄q non-negative integers and n,w ∈ Z. Now using (2.16) and taking the trace

over Hfibre
I one finds,

Zfibre
[I,I] (τ, τ̄ ) =

1

|η(τ)|2
∑

n,w∈Z

〈(n,w)|q 1
4
(n̂+ŵ)2 q̄

1
4
(n̂−ŵ)2 |(n,w)〉

=
1

|η(τ)|2
∑

n,w∈Z

q
1
4
(n+w)2 q̄

1
4
(n−w)2 =

∣∣∣∣
θ2(2τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
θ3(2τ)

η(τ)

∣∣∣∣
2

. (2.18)

For computing Zfibre
[I,σ] = Zfibre

[I,T ′] we split the untwisted space Hfibre
I into T-even and T-odd

subspaces,

F+ =
⊕

Np,N̄q
P

N̄q=even

⊕

n,w

aN1
−1a

N2
−2 · · · āN̄1

−1ā
N̄2
−2 · · · (|(n,w)〉 + (−1)nw|(w,n)〉)

⊕
⊕

Np,N̄q
P

N̄q=odd

⊕

n,w

aN1
−1a

N2
−2 · · · āN̄1

−1ā
N̄2
−2 · · · (|(n,w)〉 − (−1)nw|(w,n)〉),
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F− =
⊕

Np,N̄q
P

N̄q=odd

⊕

n,w

aN1
−1a

N2
−2 · · · āN̄1

−1ā
N̄2
−2 · · · (|(n,w)〉 + (−1)nw|(w,n)〉)

⊕
⊕

Np,N̄q
P

N̄q=even

⊕

n,w

aN1
−1a

N2
−2 · · · āN̄1

−1ā
N̄2
−2 · · · (|(n,w)〉 − (−1)nw|(w,n)〉). (2.19)

It can be checked that T ′u = ±u, u ∈ F±. Taking the trace over Hfibre
I with T ′ inserted

in the temporal direction, we see that when n 6= w the traces over F+ and F− cancel each

other, so the contribution comes only from the fixed points n = w of the T ′-transformation.

The trace is then,

Zfibre
[I,σ](τ, τ̄) ≡ Tr

Hfiber
I

T ′qLfiber
0 − 1

24 q̄L
fiber
0 − 1

24

=
∑

n=w
n,w∈Z

〈(n,w)|(−1)nwq
1
4
(n̂+ŵ)2 q̄

1
4
(n̂−ŵ)2

η(τ)q̄
1
24
∏∞

k=1(1 + q̄k)
|(w,n)〉

=
1

η(τ)

∑

n∈Z

(−1)nqn2 ·
√

2η(τ)

θ2(τ)
=

∣∣∣∣
2η(τ)

θ2(τ)

∣∣∣∣ . (2.20)

In the last line we made use of identity (A.4). Taking modular transformations we also

obtain

Zfibre
[σ,I] (τ, τ̄ ) ≡ Tr

Hfibre
σ

qLfibre
0 − 1

24 q̄L
fibre
0 − 1

24

(
= Zfibre

[I,σ](−1/τ,−1/τ̄ )
)

=

∣∣∣∣
2η(τ)

θ4(τ)

∣∣∣∣ , (2.21)

Zfibre
[σ,σ](τ, τ̄ ) ≡ Tr

Hfibre
σ

T ′qLfibre
0 − 1

24 q̄L
fibre
0 − 1

24

(
= Zfibre

[σ,I] (τ + 1, τ̄ + 1)
)

=

∣∣∣∣
2η(τ)

θ3(τ)

∣∣∣∣ . (2.22)

The expressions (2.18), (2.20), (2.21), (2.22) are the the partition traces of the fibre part of

the T-fold. They are nothing but those of the c = 1 CFT at the Kosterlitz-Thouless point.

In the computations above it was essential to include in the definition of T-

duality (2.10) the phase factor eiπn̂ŵ that is associated with the locality of vertex operators.

Since n̂ŵ = 1
4 (p̂2

L− p̂2
R) this factor contributes e

iπ
4

p̂2
L to the left-moving sector and e−

iπ
4

p̂2
R to

the right-moving sector. The authors of [16] also compute the same partition traces based

on a slightly different approach, with T-duality defined by

T ′′ : XL → XL +
1

2
π, XR → −XR, (2.23)

instead of (2.10).5 A merit of this approach is that the left and right sectors of the fibre can

be treated separately as two chiral orbifolds whose covering spaces are both S1 at self-dual

radius. The left part of the action (2.23) generates a shift orbifold, namely CFT of a boson

5The vertex operators are transformed under T ′′ as eikLXL → e
iπ

2
(n+w)eikLXL , eikRXR → e−ikRXR , so

at the fixed points n = w of the orbifold the shift in XL yields the same phase factor as eiπnw of (2.10),

giving the same contribution to the partition trace as in (2.20). When n 6= w, T ′ and T ′′ generate different

phases in vertex operators. It is argued in [16] that the difference of the phase factor can be absorbed into

the normalization of the ground states.
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on S1 at the radius reduced by half (i.e. it operates as a ‘chiral half-shift operator’). The

right part generates a reflection orbifold S1/Z2, i.e. a line element of length π. As is well

known these two chiral CFTs are equivalent; the orbifold group (2.23) acts on currents

J± = e±2iXL , J3 = i∂XL, J̄± = e±2iXR , J̄3 = i∂XR, of the underlying SU(2)L × SU(2)R
symmetry as J± → −J±, J3 → J3, J̄± → J̄∓, J̄3 → −J̄3, or

J1 → −J1, J2 → −J2, J3 → J3,

J̄1 → J̄1, J̄2 → −J̄2, J̄3 → −J̄3. (2.24)

In other words one can identify

T ′′ =
(
eiπJ3

0 , eiπJ̄1
0

)
. (2.25)

As the left and right actions of T ′′ are equivalent up to a global SU(2) rotation, the resulting

orbifold CFTs should be equivalent.

In this picture the left and right CFTs are represented by chiral bosons with (anti-

)periodic boundary conditions,

XL(z + kω1 + ℓω2) = XL(z) +
1

2
π(k(2w + α) + ℓ(2m+ β)), (2.26)

XR(z̄ + kω̄1 + ℓω̄2) =

{
XR(z̄) + π(kw + ℓm) (α, β) = (0, 0),

eπi(kα+ℓβ)XR(z̄) (α, β) 6= (0, 0),
(2.27)

where α, β ∈ {0, 1} represent boundary conditions and correspond to 0 ↔ I and 1 ↔ σ

of the orbifold sectors. ω1(= 1), ω2(= τ) are the two periods of the world-sheet torus and

w,m ∈ Z. The partition traces of these chiral bosons can be found by path-integral (see

e.g. [30, 31]) and are shown to coincide with (2.18), (2.20), (2.21), (2.22).

In the following sections, we shall work with the T ′′-operator rather than T ′ in order

to make the SU(2)-structure manifest.

2.4 Modular invariance of the partition function

The base part of the T-fold is a free boson Y (z, z̄) = YL(z) + YR(z̄), defined (in the

covering space) on S1 of radius 2R. As the group action σ of the orbifold shifts Y by 2πR,

the periodicity of Y is odd (even) integer multiple of 2πR when there is (there is not) a

σ-twisting. We thus consider periodic boundary conditions

YL(z + kω1 + ℓω2) = YL(z) + πR(kw + ℓm), (2.28)

and likewise for YR, where ω1,2 are as in (2.26) and k, ℓ ∈ Z. The partition function for

each boundary condition (w,m) is

ZR,(w,m)(τ, τ̄) =
R√
Imτ

1

|η(τ)|2 exp

{
−πR

2|wτ +m|2
Imτ

}
. (2.29)

On the world-sheet ω1 (ω2) is the spatial (temporal) direction as before. As the twisting

by T2πR in the ω1 (ω2) direction corresponds to w (m) being odd, the partition trace (2.14)
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of each sector is obtained by summing up w and m of appropriate parities,

Zbase
[α,β](τ, τ̄ ) =

∑

w′,m′∈Z

Z
2R,(w′+ α

2
,m′+ β

2 )(τ, τ̄ )


≡ 2

∑

w∈2Z+α
m∈2Z+β

ZR,(w,m)(τ, τ̄ )




=
1

|η(τ)|2
∑

k,ℓ∈Z

(−1)βkq

“

k
4R

+ (2ℓ+α)R
2

”2

q̄

“

k
4R

− (2ℓ+α)R
2

”2

, (2.30)

where α, β ∈ Z2, and we have Poisson-resummed to go to the last line. The correspondence

between the notation here and that of (2.14) is (0, 1) ↔ (I, σ). As can be easily checked

these partition traces are modular covariant:

Zbase
[α,β](τ + 1, τ̄ + 1) = Zbase

[α,α+β](τ, τ̄ ),

Zbase
[α,β](−1/τ,−1/τ̄ ) = Zbase

[β,α](τ, τ̄). (2.31)

Assembling the base and the fibre pieces from the last subsection the one-loop partition

function of the T-fold reads

ZT-fold(τ, τ̄ )=
1

2
Zbase

[0,0]

(∣∣∣∣
θ2(2τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
θ3(2τ)

η(τ)

∣∣∣∣
2
)

+Zbase
[0,1]

∣∣∣∣
η(τ)

θ2(τ)

∣∣∣∣+Zbase
[1,0]

∣∣∣∣
η(τ)

θ4(τ)

∣∣∣∣+Zbase
[1,1]

∣∣∣∣
η(τ)

θ3(τ)

∣∣∣∣ ,

(2.32)

with Zbase
[α,β] given by (2.30). As the fibre and the base parts are both modular covariant,

the T-fold partition traces (2.13) are modular covariant and hence the partition function

is modular invariant. Actually, (2.32) is just the same partition function as that of the

symmetric orbifold [
S1

1 × S1
2R

]
/
(
R⊗ T2πR

)
,

where R acts as reflection on the fiber coordinates, R : (XL,XR) → (−XL,−XR). This

of course is expected from the above construction of the modular invariant. This does not

mean, however, that the T-fold CFT (the asymmetric orbifold) describes the same physics

as the symmetric orbifold. As we shall see in the next section, the physics of D-branes in

these two models differs significantly; this is one of our motivations to elaborate on the

dynamics of T-fold boundary states in the next section.

We comment on T-duality along the base circle. The standard T-duality along the

base is not a symmetry of the T-fold since the U(1) isometry is broken by the orbifold

construction. Instead, the following interpolating orbifold may be regarded as the T-dual

of the T-fold along the base:
[
S1

1 × S1
R/2

]
/
(
T ′′ ⊗ T̃2π 1

R

)
, (2.33)

where the ‘dual translation’ T̃2π 1
R

is defined to act as (YL, YR) → (YL + 2π 1
2R , YR −

2π 1
2R ). Note that T̃2π 1

R
is interpretable as the double covering operator S1

R/2/T̃2π 1
R

∼= S1
R,

corresponding precisely to the T-dual of the half-shift operator. The modular invariant of

this model is computed to be

ZT-dual. T-fold(τ, τ̄ ) =
1

2

∑

α,β∈Z2

Z̃base
R,[α,β](τ, τ̄ )Z

fibre
[α,β](τ, τ̄ ), (2.34)
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where

Z̃base
R,[α,β](τ, τ̄ ) ≡

∑

w,m∈Z

(−1)αm+βwZR/2,(w,m)(τ, τ̄). (2.35)

For the dual radius R̃ = 1/R one can use the Poisson resummation to check that

Zbase
R,[α,β](τ, τ̄ ) = Z̃base

R̃,[α,β]
(τ, τ̄ ). (2.36)

Hence the model (2.33) indeed has the partition function equal to that of the original T-fold

with the base S1 at the dual radius.

3. D-branes in the T-fold

In this section we study boundary states describing D-branes in the T-fold background

described above. In orbifold theory there are two types of D-branes in general: bulk

and fractional branes. The bulk branes are given by making the orbifold projection on

the boundary states in the parent theory that are not invariant under the action of the

orbifold group. In other words, these are just superpositions of branes and their ‘images’

of the orbifold action. In the T-fold these roughly correspond to superposition of Dirichlet

and Neumann states in the fibre, times a base state. On the other hand, the fractional

branes correspond to boundary conditions invariant under the orbifold action already in

the parent theory (typically, the branes localized at the fixed points of orbifolds). Their

boundary states involve contributions from the twisted sectors that are necessary for an

orbifold projection in the open string Hilbert space [32]. It turns out that the both types

of branes exist in the T-fold model.

3.1 Boundary conditions and boundary states

We start with general remarks before constructing the boundary states. The machinery

of boundary conformal field theory is well developed for (symmetric) orbifold models [33 –

35]. Conformal field theory may generally have larger symmetries than Virasoro and the

question of finding boundary states is closely related to which sub-symmetry of the full

bulk symmetry the boundary should preserve. Clearly the most elementary boundary

states are the Virasoro boundary states that are spanned by Virasoro Ishibashi states [36],

since the conformal symmetry must be preserved by any boundary of CFT. In c = 1

conformal theory there are other symmetries such as U(1) or the enhanced symmetries AN

or AN/Z2 that are present at various special points in the moduli space.6 The boundary

does not necessarily preserve such an extended chiral symmetry but when it does it carries

corresponding charges of the symmetry. In the case of Virasoro the boundary carries the

label of Virasoro weight. For U(1) the boundary is characterised by momenta and winding

numbers. When the conserved symmetry is the extended symmetry AN or AN/Z2 the

boundary is characterised by the representation labels of the rational CFT. When the

6The symmetries AN and AN/Z2 are cousins of the SU(2) away from the self-dual point (in fact A1 =

SU(2)). Notations of these rational models are summarised in appendix B. A4 ≃ A1/Z2 concerns us in

studying the T-fold.
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model allows a free field representation we also have familiar Dirichlet or Neumann states;

Dirichlet is characterised by the position of the D-brane while a Neumann boundary can

carry a Wilson line parameter. In general we have better control of boundary states when

the preserved symmetry is larger. As we are ultimately interested in the physics of the

string background we shall try to construct analogues of Dirichlet and Neumann states.

This is straightforward in the bulk brane case as the concept of Dirichlet and Neumann is

just inherited from the parent theory. In constructing fractional states we will first look at

the extended symmetries A4 and A1/Z2.

For constructed boundary states we shall check the Cardy conditions, considering

the cylindrical (annular) world-sheet. Namely, the closed string amplitude Zc(is) =

〈Ba|e−πsHc |Bb〉 should be equated to the open string one-loop amplitude Zo(it) =

TrHab
e−2πtHo

by modular transformation t = 1/s, with boundary conditions correspond-

ing to the boundary states 〈Ba| and |Bb〉. Here Hc ≡ L0 + L̄0 − c
12 , Ho ≡ Lopen

0 − c
24

are the closed and open string Hamiltonians. When both 〈Ba| and |Bb〉 are frac-

tional branes, the open string amplitude has to be suitably orbifold-projected: Zo(it) =
1
|G|
∑

h∈G TrHab

[
he−2πtHo]

.

3.2 Bulk branes

Let us first recall that familiar Dirichlet and Neumann states of a compact boson on a

circle of radius R are

|D(x0)〉R =
1

21/4
√
R

∑

n∈Z

e−inx0/R exp

{ ∞∑

k=1

1

k
a−kā−k

}
|(n, 0)〉,

|N(x̃0)〉R =

√
R

21/4

∑

w∈Z

e−iwx̃0R exp

{
−

∞∑

k=1

1

k
a−kā−k

}
|(0, w)〉, (3.1)

with x0 (x̃0) parametrising the position of the D-brane (Wilson line on the Neumann state).

Their overall normalisation has been chosen so that the overlaps yield consistent open string

spectra (the Cardy conditions) (∆x0 ≡ x0 − x′0, ∆x̃0 ≡ x̃0 − x̃′0, t ≡ 1/s);

R〈D(x0)|e−πsHc |D(x′0)〉R =
1√
2R

1

η(is)

∑

n∈Z

e−2πs n2

4R2 ei
∆x0

R
n

=
1

η(it)

∑

w∈Z

e
−2πt

“

Rw+
∆x0
2π

”2

≡ ZDD
R (it;∆x0)

R〈N(x̃0)|e−πsHc |N(x̃′0)〉R =
R√
2

1

η(is)

∑

w∈Z

e−2πs R2w2

4 eiR∆x̃0w

=
1

η(it)

∑

n∈Z

e
−2πt

“

n
R

+
∆x̃0
2π

”2

≡ ZNN
R (it;∆x̃0)

R〈D(x0)|e−πsHc |N(x̃0)〉R =
1√
2

√
2η(is)

θ2(is)
=

√
η(it)

θ4(it)
≡ ZDN (it). (3.2)

We wish to find boundary states of the T-fold that are combination of such Dirich-

let and Neumann states. As already addressed, we regard the T-fold as the orbifold of
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S1
1 (fibre) × S1

2R (base) with respect to the involution σ ≡ T ′′ ⊗ T2πR, where the improved

T -operator T ′′ is defined by (2.23).

The position of a localized D-brane in the base direction will be denoted by y0, and

for a Neumann state the value of Wilson line in the base by ỹ0. On the other hand, in

the fibre direction, it is convenient to express the open string modulus (position or Wilson

line) by a common angle variable θ because the fibre circle is self-dual.

An obvious way of constructing a bulk brane is to act the T-fold operator σ ≡ T ′′⊗T2πR

on a boundary state of S1
1 × S1

2R. For instance, if taking Dirichlet conditions in both fibre

and base directions, the desired boundary state will be

|D(θ)D(y0)〉 =
1 + σ√

2
|D(θ)〉fibre

1 ⊗ |D(y0)〉base
2R . (3.3)

The normalisation factor of 1/
√

2 is for consistency with the Cardy conditions (note that
1
2 (1 + σ)2 = 1 + σ). σ acts on the base Dirichlet state as translation by 2πR,

σ : |D(y0)〉base
2R → |D(y0 + 2πR)〉base

2R (3.4)

while it acts trivially on the Neumann state,

σ : |N(ỹ0)〉base
2R → |N(ỹ0)〉base

2R . (3.5)

The action of σ on the fibre is slightly non-trivial due to phase ambiguity of the Fock vacua.

We choose the phase so that σ acts on the fibre states as7

σ : |D(θ)〉fibre ↔ |N(θ)〉fibre, (3.6)

in accordance with the standard order 2 relation of T-duality (T ′′)2 = 1.

The bulk DD brane (3.3) is organised into a superposition of direct products of ordi-

nary Dirichlet/Neumann states,

|D(θ)D(y0)〉 =
1√
2

(
|D(θ)〉fibre

1 ⊗ |D(y0)〉base
2R + |N(θ)〉fibre

1 ⊗ |D(y0 + 2πR)〉base
2R

)
. (3.7)

One may construct similar states by starting from the DN , ND, NN states and then

projecting onto the invariant subspaces,

|D(θ)N(ỹ0)〉 =
1 + σ√

2
|D(θ)〉fibre

1 ⊗ |N(ỹ0)〉base
2R

=
1√
2

(
|D(θ)〉fibre

1 + |N(θ)〉fibre
1

)
⊗ |N(ỹ0)〉base

2R ,

|N(θ)D(y0)〉 =
1 + σ√

2
|N(θ)〉fibre

1 ⊗ |D(y0)〉base
2R

=
1√
2

(
|N(θ)〉fibre

1 ⊗ |D(y0)〉base
2R + |D(θ)〉fibre

1 ⊗ |D(y0 + 2πR)〉base
2R

)
,

7The relation (3.6) is not possible with the naive T-operation T , since T 2 6= 1 and the extra phase

cannot be absorbed into normalisation of the Fock vacua.
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|N(θ)N(ỹ0)〉 =
1 + σ√

2
|N(θ)〉fibre

1 ⊗ |N(ỹ0)〉base
2R

=
1√
2

(
|N(θ)〉fibre

1 + |D(θ)〉fibre
1

)
⊗ |N(ỹ0)〉base

2R . (3.8)

It is obvious from the construction that these four states are actually not all distinct but

only two are:

|N(θ)D(y0)〉 = |D(θ)D(y0 + 2πR)〉, |N(θ)N(ỹ0)〉 = |D(θ)N(ỹ0)〉. (3.9)

It is straightforward to compute overlaps between these bulk brane states. Using the

notation of (3.2) we find (∆θ ≡ θ − θ′, ∆y0 ≡ y0 − y′0, ∆ỹ0 ≡ ỹ0 − ỹ′0)

〈D(θ)D(y0)|e−πsHc|D(θ′)D(y′0)〉=ZDD
1 (it;∆θ)ZDD

2R (it;∆y0)+Z
DN(it)ZDD

2R (it;∆y0+2πR),

(3.10)

〈D(θ)N(ỹ0)|e−πsHc |D(θ′)N(ỹ′0)〉=
{
ZDD

1 (it;∆θ) + ZDN(it)
}
ZNN

2R (it;∆ỹ0), (3.11)

and

〈D(θ)D(y0)|e−πsHc |D(θ′)N(ỹ′0)〉 =
{
ZDD

1 (it;∆θ) + ZDN (it)
}
ZDN(it). (3.12)

It is easy to check that each overlap represents a sum of Virasoro characters with non-

negative integer multiplicity in the open string sector, satisfying the Cardy conditions.

3.3 Fractional branes

One way of constructing fractional branes is to use the fact that the fibre CFT of the T-fold

that we are considering is rational with respect to extended algebra A4 ≃ A1/Z2 (in the no-

tation of [29]; see appendix B). Let us recall construction of Ishibashi states in rational con-

formal theory first. We assume the theory to be diagonal and look for boundary states that

conserve the whole chiral algebra. The conservation of the chiral symmetry on the bound-

ary is characterised by trivial gluing conditions of the generators on the boundary states,

(
Wm − (−1)hWW−m

)
|B〉 = 0, (3.13)

where Wm (Wm) are the mode operators of the left (right) chiral algebra generators, and

hW is the spin of the W operator (hW = hW ). The conditions (3.13) include as a special

case the conformal invariance (Ishibashi) conditions,

(
Lm − L−m

)
|B〉 = 0, (3.14)

meaning that the left and right stress tensors are analytic on the boundary, [T − T̄ ]∂Σ = 0.

As the condition (3.13) is linear any linear sum of |B〉 also satisfies this condition. A

standard choice of basis in the space of such states is the Ishibashi states

|α〉〉 =
∑

N

|α;N〉 ⊗ U |α;N〉, (3.15)
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Sector T-even (untwisted) T-odd (twisted)

Conformal weight 0 1 1
4

1
16

9
16

A4 primary φ0 φ4 φ2, φ6 φ1, φ7 φ3, φ5

A1/Z2 primary I j φ1
2, φ

2
2 σ1, σ2 τ1, τ2

Table 1: Correspondence of the primary fields in A4 and A1/Z2 rational theories.

where α is the label for modules and N is the label for states within each module. The anti-

unitary operator U comes from time reflection. An Ishibashi state (3.15) intertwines the

left and right Hilbert spaces; as the chiral blocks are irreducible representations of the chiral

symmetry it follows from Schur’s lemma that the intertwiners must be trivial. We have seen

in section 2 that the T-fold with the self-dual fibre may be reformulated (using T ′′) so that

the state space factorises into the left and right sectors that are isomorphic to each other.

This allows us to use Ishibashi states of the form (3.15) to analyse D-branes of the T-fold.

The left part of the fibre is a compact chiral boson on S1 at radius 1/2. The theory

is rational with respect to the extended symmetry A4, with eight primary fields φk=0,...,7.

They are realised by vertex operators

φk(z) = eikXL(z)/2. (3.16)

The right part of the fibre is a Z2 orbifold chiral boson at self-dual orbifold radius. It is

rational with respect to chiral algebra A1/Z2 and has eight primaries: the identity I, the

current operator j, a pair of operators φi
2 (i = 1, 2) that are inherited from the parent

S1 CFT, and four twist operators σi and τ i. Basic features of these rational theories are

summarised in appendix B. The two chiral boson theories of the left and right parts of the

fibre are equivalent, and there exists a one-to-one correspondence between the states. The

correspondence of the rational CFT primaries is summarised in table 1.

As being the same chiral CFT the correspondence is not limited to the level of rational

CFT primaries but persists also at the level of the Virasoro primaries. It is convenient to

introduce an isomorphic map ι from a state of the A4 CFT to the corresponding state in

the A1/Z2 CFT. Using this map we may write, for example, ι|φ0〉 = |I〉. Eight Ishibashi

states corresponding to the eight rational primaries of the fibre of the T-fold are then,

|φk〉〉 =
∑

N

|φk;N〉 ⊗ |ιφk;N〉. (3.17)

Note that φk are the A4 primary labels, while ιφk refer to A1/Z2 primaries. The Cardy

boundary states are found in the usual way (see (B.13) below),

|φk〉C = 2−
3
4

7∑

ℓ=0

e−iπkℓ/4|φℓ〉〉, (3.18)

using the fibre Ishibashi states defined above. These are linear sums of T-even states

|φ0,2,4,6〉〉 and T-odd states |φ1,3,5,7〉〉. We have to choose Neumann condition on the base
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as it is invariant under the shift T2πR : Y → Y + 2πR. With Wilson line ỹ0 ∈ S1 turned

on, the base Neumann state is

|N(ỹ0, α)〉base = 21/4
√
R

∑

w∈2Z+α

e−iwỹ0Re−
P∞

m=1
1
m

b−mb̄−m |(n = 0, w)〉base, (3.19)

where bm, b̄m are the left and right mode operators of the base field Y , and α = 0 (1)

in the untwisted (twisted) sector. Fractional boundary states of the full T-fold theory is

found by combining the fibre with the base in such a way that the fibre is T-even (odd)

when the base winding number is even (odd). This is analogous to the construction of the

one-loop partition function. We thus find fractional brane states,

|φfibre
k Nbase(ỹ0)〉 =

√
R

2





∑

w∈2Z

ℓ=0,2,4,6

e−iwỹ0R− iπkℓ
4 e−

P∞
m=1

b−mb̄−m
m |φℓ〉〉fibre|(0, w)〉base (3.20)

+
∑

w∈2Z+1
ℓ=1,3,5,7

e−iwỹ0R− iπkℓ
4 e−

P∞
m=1

b−mb̄−m
m |φℓ〉〉fibre|(0, w)〉base




.

The fibre is characterized by the RCFT primary of (A4)
L ⊗ (A1/Z2)

R and the label is

taken from the left part (φk). It is not quite correct to call the fibre part as Neumann

or Dirichlet; the Cardy states of the A1/Z2 CFT (the right-moving sector) are identified

with 4 Dirichlet and 4 Neumann states at the orbifold fixed points, while those of the

A4 theory (the left-moving sector) may be identified as Neumann states with Wilson line

values at evenly spaced 8 points on the S1, that is x̃0 = 0, 1
2π, π, . . . ,

7
2π. Although there

is no naturally defined momentum or winding number in the twisted sector of the fibre,

it is clear from the construction that one may introduce ground states |[n,w]〉 with the

momentum n and the winding w inherited from the left-moving A4 CFT. Introducing also

mode operators ā′m (m ∈ Z) in the right-moving sector that correspond to an in the left-

moving sector, one may identify the Cardy states (3.18) with ‘Neumann’ states having

Wilson line x̃0 = kπ
2 ,

|φk〉C = 2−
3
4

∑

w∈Z

e−
iπwk

4 e−
P∞

m=1
1
n

a−mā′
−m |[0, w]〉fibre. (3.21)

In this notation the Ishibashi states may be written as,

|φℓ〉〉 = e−
P∞

m=1
1
m

a−mā′
−m

∑

w∈Z

|[0, ℓ+ 8w]〉fibre. (3.22)
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Inserting (3.22) into (3.20) one may rewrite the fractional states as

|φfibre
k Nbase(ỹ0)〉 (3.23)

=

√
R

2





∑

w∈2Z

ℓ=0,2,4,6

e−iwỹ0R− iπkℓ
4 e−

P∞
m=1

1
m

(a−mā′
−m+b−mb̄−m)

∑

w′∈Z

|[0, ℓ+ 8w′]〉fibre|(0, w)〉base

+
∑

w∈2Z+1
ℓ=1,3,5,7

e−iwỹ0R− iπkℓ
4 e−

P∞
m=1

1
m

(a−mā′
−m+b−mb̄−m)

∑

w′∈Z

|[0, ℓ + 8w′]〉fibre|(0, w)〉base




.

Recalling that k is related to the value of the Wilson line of the A4 theory by 1
2kπ = x̃0 ≡ θ

one may write the fractional states parametrised by θ and ỹ0:

|F ; θ, ỹ0〉 =

√
R

2

∑

w,ℓ∈Z

w−ℓ∈2Z

e−iwỹ0R− iℓθ
2 e−

P∞
m=1

1
m

(a−mā′
−m+b−mb̄−m)|[0, ℓ]〉fibre|(0, w)〉base.

(3.24)

Here the parameter θ may be regarded continuous, reflecting unbroken U(1) symmetry of

the moduli. It is periodic and we take its range as 0 ≤ θ < 4π.

Instead of the somewhat cluttered bottom up approach described above one may for-

mulate the fractional states by focusing on the underlying SU(2)1 symmetry of the fibre. An

advantage of this method is that it is easier to evaluate cylinder amplitudes with the bulk

branes. We start with recalling that the T-duality operator T ′′ (2.24) acts as asymmetric

rotations on the fibre

T ′′ =
(
eiπJ3

0 , eiπJ̄1
0

)
, (3.25)

with Ja and J̄a the left and right SU(2)1 currents. It is convenient to introduce an auto-

morphism κ of SU(2)1, defined by

κJ1κ−1 = J3, κJ2κ−1 = J2, κJ3κ−1 = −J1, κJ̄aκ−1 = J̄a. (3.26)

The point is that κ interpolates between the standard reflection orbifold and the orbifold

generated by T ′′. Indeed, the reflection of the fibre R : X = (XL,XR) → −X may be

written

R =
(
eiπJ1

0 , eiπJ̄1
0

)
, (3.27)

and hence

κRκ−1 = T ′′. (3.28)

Note that for the untwisted Hilbert space ( i.e. the integrable reps. of SU(2)1), we may

explicitly write

κ = ei
π
2
J2
0 , κ−1 = e−i π

2
J2
0 . (3.29)
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In the twisted sector κ cannot be written as (3.29) since J2 does not have zero-mode on

HR or HT ′′
. It is nevertheless clear8 that κ may be extended to isomorphism between the

R-twisted Hilbert space HR and the T ′′-twisted Hilbert space HT ′′
,

κ : HR ∼=−→ HT ′′
. (3.30)

We wish to find boundary conditions that are invariant under operation of σ ≡ T ′′ ⊗T2πR.

Along the base circle we have to choose as before Neumann conditions as they are

invariant under the shift, Ta|N ; ỹ0〉2R = |N ; ỹ0〉2R. On the fibre desired boundary states

are obtained from the usual reflection orbifold by using the interpolation κ. There is a

one-parameter (Wilson line) family of fractional branes in the reflection orbifold:9

|F ; θ〉R =
e2iθJ1

0

√
2

(
|N〉1 + |N〉R1

)
, (3.31)

which is obviously reflection invariant, R|F ; θ〉R = |F ; θ〉R. The Neumann boundary state

in the R-twisted sector |N〉R1 is characterized by

(J1
n + J̄1

−n)|N〉R1 = 0, (n ∈ Z) ,

(Ja
r + J̄a

−r)|N〉R1 = 0,

(
r ∈ 1

2
+ Z, a = 2, 3

)
,

R
1 〈N |e−πsH(c)

e2πizJ1
0 |N〉R1 =

Θ1/2,1(z|is) + Θ−1/2,1(z|is)√
2η(is)

=
1

η(it)

∑

n∈Z

(−1)ne−2πt(n+ z
2)

2

. (t ≡ 1/s) (3.32)

Fractional branes of the T ′′-orbifold are obtained from (3.31) using κ,

|F ; θ〉T ′′
= κ|F ; θ〉R = κ

e2iθJ1
0

√
2

(
|N〉1 + |N〉R1

)
=
e2iθJ3

0

√
2
κ
(
|N〉1 + |N〉R1

)
. (3.33)

Fractional brane states of the T-fold model associated with the combined operation

σ = T ′′ ⊗ T2πR then read

|F ; θ, ỹ0〉 =
1√
2
|N(ỹ0)〉2R ⊗ e2iθJ3

0κ|N〉1 +
1√
2
|N(ỹ0)〉T2R ⊗ e2iθJ3

0κ|N〉R1 , (3.34)

which represents the same states as those found earlier (3.24). These states are invariant un-

der the orbifold projection, 1
2(1 +σ)|F ; θ, ỹ0〉 = |F ; θ, ỹ0〉. The Neumann states of the base

8Recall the discussion based on the rational CFT primaries. One may identify κ as

κ = (ι−1, 1) : (A1/Z2)
L ⊗ (A1/Z2)

R ∼=−→ AL
4 ⊗ (A1/Z2)

R.

9These are periodic in θ with periodicity 4π, |F ; θ + 4π〉R = |F ; θ〉R. Note that |F ; θ + 2π〉R =

e2iθJ1

0 (|N〉1 − |N〉R1 )/
√

2. They represent Neumann condition when θ = nπ and Dirichlet condition when

θ = π
2

+ nπ (n = 0, . . . , 3).
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circle in the twisted sector |N(ỹ0)〉T2R = |N(ỹ0, α = 1)〉base (see (3.19)) are characterized by

(with the same normalisation as |N(ỹ0)〉2R = |N(ỹ0, α = 0)〉base in the untwisted sector)

T
2R〈N(ỹ0)|e−πsH(c) |N(ỹ′0)〉T2R =

2R√
2

1

η(is)

∑

w∈Z

e−2πs 1
4{2R(w+ 1

2)}2

e−i2R(w+ 1
2)(∆ỹ0)

=
1

η(it)

∑

n∈Z

(−1)ne
−2πt

“

n
2R

+
∆ỹ0
2π

”2

. (3.35)

Let us evaluate the overlaps involving the fractional states. We first consider the over-

laps with the bulk brane states. Clearly, only the untwisted sector contributes to the ampli-

tudes, and we may simply replace κ with ei
π
2
J2
0 . We can then utilize the SU(2)1 technique

demonstrated in appendix D. Making use of (D.4) we find (∆θ ≡ θ − θ′, ∆ỹ0 ≡ ỹ0 − ỹ′0),

〈D(θ)D(y0)|e−πsH(c) |F ; θ′, ỹ′0〉 = ZDN (it)
1

η(it)

∑

n∈Z

e−2πt{n+ 1
2π

α(∆θ)}2

,

〈D(θ)N(ỹ0)|e−πsH(c) |F ; θ′, ỹ′0〉 = ZNN
2R (it;∆ỹ0)

1

η(it)

∑

n∈Z

e−2πt{n+ 1
2π

α(∆θ)}2

, (3.36)

where we introduced the notation

α(z) = cos−1

(
cos z√

2

)
. (3.37)

In computing the overlaps between the fractional branes one can evaluate the untwisted

and twisted pieces separately. In the untwisted sector we find,

〈F ; θ, ỹ0|e−πsH(c) |F ; θ′, ỹ′0〉 |untwisted =
1

2
ZNN

2R (it;∆ỹ0)Z
NN
1 (it;∆θ) , (3.38)

and in the twisted sector,

〈F ; θ, ỹ0|e−πsH(c) |F ; θ′, ỹ′0〉 |twisted =
1

2η(it)2

∑

m,n∈Z

(−1)m+ne
−2πt

»

“

m
2R

+
∆ỹ0
2π

”2
+(n+∆θ

2π )
2

–

.

(3.39)

The total fractional-fractional overlap is then,

〈F ; θ, ỹ0|e−πsH(c) |F ; θ′, ỹ′0〉 =
1

η(it)2

∑

m,n∈Z

m−n∈2Z

e
−2πt

»

“

m
2R

+
∆ỹ0
2π

”2
+(n+∆θ

2π )
2

–

. (3.40)

The amplitudes (3.36) and (3.40) display q-expansions (q ≡ e−2πt) with non-negative inte-

ger multiplicities in the open string channel, and hence the Cardy conditions are satisfied.

When the boundary conditions on the two boundaries are same the amplitude (3.40) con-

tains the Virasoro vacuum character with multiplicity one, indicating that the boundary

states (3.34) represent elementary fractional branes.
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3.4 Some comments on the branes

We conclude this section with comments on the D-branes we have found.

1. The bulk branes allow obvious geometrical interpretations. The branes localized on

the base circle (Dirichlet b.c. along the base) are interpretable as an alternating array

of D0 and D1 branes along the fiber if lifted up to the universal cover of the base

circle. Also, a brane wrapped on the base (Neumann b.c. along the base) is nothing

but a superposition of D0 and D1 branes along the fiber which are T-dual to each

other. These branes should be consistent with those given by the classical analysis

based on the doubled torus approach [17]. This is obvious for the branes localized

on base. It is also inferred by arguments in [17] that the consistent branes wrapped

on the base must have even winding numbers. This in fact agrees with our analysis

as the bulk boundary states with Neumann b.c. along the base (the DN and NN

states in (3.8)) are identified with branes wrapped twice on the base; those wrapped

only once cannot exist consistently as a geometric object in the doubled torus.

2. The fractional branes on the other hand are more curious as they do not have a

simple geometrical interpretation. One can for example read from the cylinder am-

plitudes (3.36) that the lightest mass of an open string between a fractional and a

bulk brane is a non-linear function of the moduli of the branes (location or Wilson line

along the fiber), ∝
[
cos−1

(
cos z√

2

)]
, with z the modulus. This feature appears to be

rather exotic compared to the standard D-brane dynamics on geometric backgrounds.

We point out that the physics of T-fold may be distinguished by this characteristic

feature from a geometric background (i.e. a non-linear σ-model), even at energy scales

much lower than the string scale. This is due to the non-linear behavior mentioned

above already appearing in the no-winding sector of the base circle. On the other

hand, if looking at the closed string sector, non-geometric properties of T-fold origi-

nate only from strings wound (odd times) around the base circle, which are expected

to decouple from the low energy physics. For this reason D-brane dynamics would

be important in investigating physics of T-folds.

Let us be more specific about what we actually mean by ‘geometric’ or ‘non-

geometric.’ We classify the boundary conditions defining D-branes into two classes:

(i) ‘geometric branes,’ corresponding to linear gluing conditions with respect to the

σ-model coordinates X, Y , and

(ii) ‘non-geometric branes,’ defined by non-linear gluing conditions.10

Geometric branes in this sense have obvious interpretations in terms of non-linear

σ-models with boundaries, whereas non-geometric branes are not. Geometric branes

10If one instead describes the X-sector by the SU(2)-WZW model at level 1, all the boundary conditions

considered here are linearly realized in terms of the SU(2)-current algebra. Note, however, the SU(2)-WZW

model is quite different from a non-linear σ-model which has the central charge equal to the dimensionality

of the target space.
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are of primary importance as objects in the classical geometry defined in the particle

theory limit. The bulk branes considered above are actually geometric in this sense.

On the other hand, in the reflection orbifold S1
R′=1/Z2

∼= (A1/Z2)
L ⊗ (A1/Z2)

R, the

fractional brane (3.31) has one modulus parameter θ, and there exist eight geometric

points corresponding to linear boundary conditions in the moduli space: θ = nπ

(Neumann), θ = π
2 + nπ (Dirichlet) with n = 0, 1, 2, 3 (see also appendix B.) In

contrast, our fractional branes in the T-fold are entirely non-geometric since the

boundary condition is always non-linear in the moduli space.

We emphasise that, if comparing the T-fold with the symmetric orbifold (reflection

orbifold), the spectra of Cardy states with respect to Virasoro algebra should be

identical, since the torus partition functions coincide and thus they have isomorphic

Hilbert spaces of closed string states. What we address here is that they neverthe-

less have inequivalent spectra of geometric branes. The geometric bulk branes in the

T-fold we constructed above are mapped by the isomorphism to some non-geometric

branes in the reflection orbifold, and vice versa. Moreover, as is obvious from our con-

struction, the fractional branes in the T-fold are mapped to those in the reflection

orbifold by the isomorphism; the latter are well-defined geometrical objects local-

ized at the fixed points of the orbifold (and their marginal boundary deformations),

whereas the former are entirely non-geometric, as addressed above.

It is not clear to us at the moment how the fractional branes may be understood in

the framework of the doubled torus. This is obviously an interesting issue. It might

be of some help to consider the model as a special case of the SU(2) WZW model

(see section 5).

3. An important set of information encoded in the boundary states is the ground state

degeneracy (Affleck-Ludwig g-factor) [37]. It is defined as the overlap of a boundary

state with the Möbius -invariant untwisted closed string vacuum,

gB = 〈(n = 0, w = 0)|B〉, (3.41)

where the phase convention of the states are chosen so that gB ≥ 0. The g-factor

is a conformal fixed point value of the g-function that decreases along boundary

renormalisation group flows (analogous to the celebrated c-theorem in the bulk). For

c = 1 CFT on S1 of radius R, the g-factors of the Dirichlet and Neumann states are

gD(R) =
1

21/4
√
R
, gN (R) =

√
R

21/4
. (3.42)

When CFT under study appears as an internal space of string compactification (such

as in our case), the g-factor measures the mass (or stability) of the brane [38]. The

rationale behind this is that the mass of a brane is actually measured by its interaction

with gravitons. The scattering amplitude is computed from the two-point function of
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graviton vertices on the disk topology, which reduces through bulk operator product

expansions to (a sum of) one point functions on the disk,

Aµν = 〈~kL, ~kR|aµ
1 ā

ν
1 |B〉, µ, ν = 0, . . . ,D − 1 (3.43)

(D is the spacetime dimensions). Its symmetric traceless part yields the metric,

the antisymmetric traceless part the Kalb-Ramond 2-form field, and the trace part

the dilaton upon Fourier transformation [39]. The Aµν factorises into a noncom-

pact spacetime part and a compact internal part. From the noncompact spacetime

viewpoint the g-factor from the internal CFT appears universally as a coefficient of

the graviton amplitude and contributes to the coupling strength of the graviton to

the brane. The g-factor of D-branes in the T-fold is immediately read off from the

boundary states. They are

gDfibreDbase

bulk (R) =
1√
2R

, gDfibreNbulk

bulk (R) =
√

2R, (3.44)

for the bulk brane states and

gfrac(R) =

√
R

2
(3.45)

for the fractional states. As gDD
bulk ≪ gfrac < gDN

bulk when R ≫ 1 and gfrac < gDN
bulk ≪

gDD
bulk when R ≪ 1, we find from the above reasoning that the bulk branes with the

Dirichlet base are most stable in the former case, whereas in the latter the fractional

branes are most stable.

4. It is also easy to construct boundary states in the T-dualized T-fold (2.33). All we

have to do is to exchange the Neumann and Dirichlet boundary states in the base

part in (3.3), (3.8), (3.34) etc. Especially, only the Dirichlet b.c. along the base

direction is possible for the fractional branes, since the ‘double cover’ operator T̃2π 1
R

leaves the Dirichlet b.c. invariant, while for the Neumann b.c. it does not.

4. World-sheet fermions

Our discussion so far has been limited to the bosonic theory. We now consider a simple

N = 1 extension of the S1 over S1 T-fold that we have discussed in the previous sections.

In addition to the fibre and base bosons X and Y , we introduce the fibre and base fermions

which we shall denote ψX and ψY . Under the usual T-duality the fibre fields undergo

transformations,

(XL,XR) → (XL,−XR),
(
ψX

L , ψ
X
R

)
→
(
ψX

L ,−ψX
R

)
. (4.1)

As it turns out, construction of a modular invariant partition function (while keeping the

natural order 2 orbifold structure) is not entirely automatic. Below we describe a model

of N = 1 T-fold that is an asymmetric orbifold of order 2; this is based on an observation
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that at a special radius of the fibre there exists a global SU(2) symmetry which is similar

to the one we encountered in the bosonic case.

We choose the fibre radius to be the free fermion radius R =
√

2 (the SO(2)-point).

This allows one to fermionise the fibre boson X = XL +XR according to the rule

1√
2

(
ψ1

L ± iψ2
L

)
= e±iXL

√
2, (4.2)

and likewise for the right mover. Identifying the fermionic component as

ψ3
L = ψX

L , (4.3)

the fibre is represented by a system of three fermions, which is known to possess an

SO(3)1 ∼= SU(2)2 current algebra symmetry. Indeed, the affine SU(2) currents at level

2 are explicitly constructed as

Ja = −iǫabcψb
Lψ

c
L, J̄a = −iǫabcψb

Rψ
c
R, (4.4)

where ǫabc being totally antisymmetric and ǫ123 = +1.

We start with the diagonal spin structures and make an orbifolding

S1√
2
/

"

T
2π 1√

2

⊗(−1)F S
L

#

, (4.5)

where FS
L is the space-time fermion number associated with the left mover. Modding out

by T2π 1√
2
⊗ (−1)F

S
L makes the NS-NS (R-R) sector to have even (odd) KK momenta. After

incorporating suitable twisted sectors, this aligns the spin structures of the three fermions.

We then obtain the diagonal modular invariant of SU(2)2 WZW:11

Z(τ, τ̄) =
∑

ℓ=0,1,2

∣∣∣χ(2)
ℓ (τ)

∣∣∣
2

=
1

2

(∣∣∣∣
θ2(τ)

η(τ)

∣∣∣∣
3

+

∣∣∣∣
θ3(τ)

η(τ)

∣∣∣∣
3

+

∣∣∣∣
θ4(τ)

η(τ)

∣∣∣∣
3
)
. (4.6)

As in the bosonic case, we define the T-fold as an orbifold generated by a group of order

2, namely the half-shift of the base combined with improved T-duality transformation:

T ′′ : XL → XL + π

√
1

2
, XR → −XR, ψX

L → ψX
L , ψX

R → −ψX
R , (4.7)

which acts on the SU(2)2 currents as

(J1, J2, J3) → (−J1,−J2, J3) , (J̄1, J̄2, J̄3) → (J̄1,−J̄2,−J̄3). (4.8)

The transformation (4.7) is again identified with asymmetric chiral rotation

T ′′ =
(
eiπJ3

0 , eiπJ̄1
0

)
. (4.9)

11The orbifolding (4.5) is quite similar to the Scherk-Schwarz compactification [40] (or the thermal su-

perstring theory [41]). In fact, the SU(2)2 theory is useful in working with the thermal circle with inverse

temperature β = 2π
√

2k (k ∈ Z>0) in the RNS superstring, as discussed e.g. in [42].
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It is then straightforward to proceed as in the bosonic case to find the closed and open

string spectra. Instead of investigating this particular model, we shall in the next section

explore a more general class of T-fold models with SU(2) fibre at arbitrary level, which

includes the N = 1 T-fold as a special case at level 2.

Finally, we remark on application of the N = 1 T-fold to models of superstring vacua.

For such purposes we need to generalise the fibre of the T-fold to a torus of even dimensions

so that the chirality of the space-time fermions is unchanged under the T-duality action.

A complication is that we need to carefully take account of the spin structures of the

world-sheet fermions and the GSO condition, leading us to consider truly asymmetric

modular invariants. This is certainly a very interesting subject and related work appeared

in [18, 19, 16]. We hope to report on progresses in a separate publication.

5. Extension to SU(2)k fibre

In the above examples the SU(2) structure was essential for obtaining the modular invariant

one-loop partition functions and also for the existence of consistent boundary states. As

the bosonic and N = 1 supersymmetric T-folds correspond to SU(2)k fibre with k = 1 and

k = 2, it is natural to extend them to SU(2)k fibre of arbitrary level k. In this section we

discuss such an extension.

5.1 SU(2)k WZW T-fold

The T-fold we shall consider consists of the fibre of SU(2)k WZW model and the base

which is a circle of radius R. This is formulated as an orbifold

[
SU(2)k × S1

2R

]
/Z2 , (5.1)

with the Z2 orbifold action σ ≡ (eiπJ3
0 , eiπJ̄1

0 )⊗T2πR. We shall be interested in the case where

the fibre SU(2)k CFT is diagonal. As before, T2πR is the translation along the covering space

of the base circle T2πR : Y → Y +2πR, and the SU(2)k currents are Ja and J̄a, with a =

1, 2, 3. Twisting by eiπJ3
0 or eiπJ̄1

0 generates a Z2-orbifold of the chiral WZW model. The

one-loop partition function of the T-fold is obtained from those of the Z2 WZW orbifolds

and the base part, suitably combined in accordance with the T-invariant projection:

ZSU(2) T-fold(τ, τ̄ ) =
1

2

∑

α,β∈Z2

Zbase
[α,β](τ, τ̄ )

k∑

ℓ=0

χ
(k)
ℓ,[α,β](τ)χ

(k)
ℓ,[α,β](τ) . (5.2)

The definition and related formulas of the twisted SU(2) characters χ
(k)
ℓ,[α,β](τ) are

summarized in appendix C. The modular invariant is again left-right symmetric, because

the eiπJ3
0 -twist (on the left-mover) and the eiπJ̄1

0 -twist (the right-mover) result in the same

character functions χ
(k)
ℓ,[α,β].

To clarify the modular properties of the partition function (5.2) it is more convenient

to use another notation of twisted characters χ̂
(k)
ℓ,(a,b)(τ), defined in (C.9). These differ from

– 23 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
7

χ
(k)
ℓ,[α,β](τ) only by phase normalisation and are covariant under modular transformations

(see (C.6) and (C.7)). One may then rewrite the partition function as

ZSU(2) T-fold(τ, τ̄) =
1

2

∑

α,β∈Z2

Zbase
[α,β](τ, τ̄ )

k∑

ℓ=0

χ̂
(k)
ℓ,(α/2,β/2)(τ)χ̂

(k)
ℓ,(α/2,β/2)(τ)

=
∑

w,m∈Z

ZR,(w,m)(τ, τ̄ )

k∑

ℓ=0

χ̂
(k)
ℓ,(w/2,m/2)(τ)χ̂

(k)
ℓ,(w/2,m/2)(τ) , (5.3)

where ZR,(w,m)(τ, τ̄ ) is defined in (2.29). This is manifestly modular invariant, since each

piece behaves covariantly under modular transformations.

We incidentally remark that if merely the modular invariance is concerned, another

(entirely asymmetric) modular invariant is possible:

Z ′(τ, τ̄ ) =
∑

w,m∈Z

ZR,(w,m)(τ, τ̄ )

k∑

ℓ=0

χ
(k)
ℓ (τ)χ̂

(k)
ℓ,(w/2,m/2)(τ) . (5.4)

Since this is generated by an asymmetric action T2πR ⊗ (1, eiπJ̄1
0 ) that does not contain

eiπJ3
0 -twist on the fibre, it may be regarded as a T-fold with the original definition of T-

duality (T , without the XL-translation nor the phase shift eiπn̂ŵ). While modular invariant

by construction, whether this model has any relevance as a physically acceptable string

vacuum is not immediately clear to us. There is level mismatch in the twisted sectors in

general, and the model is not an orbifold of order 2. The order of the orbifold group is

N ≡ L.C.M {N ′, 2}, where N ′ is the smallest positive integer such that e2πi N′k
16 = 1. In

the level k = 1 case (a bosonic T-fold of S1-fiber), for instance, this construction gives rise

to an asymmetric modular invariant of an order 16 orbifold. Similarly, k = 2 (an N = 1

T-fold of S1-fiber) leads to an order 8 asymmetric orbifold. In those cases, unfortunately,

there arises a problem of locality of vertex operators. Below in this section we shall focus

on the model given by (5.2).

5.2 Bulk branes in the SU(2) T-fold

Let us consider SU(2)k generalisation of the bulk branes discussed in section 3.2. We shall

first focus on the familiar Cardy states [43] defined by (L = 0, 1, . . . , k)

|L〉C ≡
k∑

ℓ=0

S
(k)
L,ℓ√
S

(k)
0,ℓ

|ℓ〉〉, (5.5)

where S
(k)
ℓ,ℓ′ ≡

√
2

k+2 sin
(
π (ℓ+1)(ℓ′+1)

k+2

)
is the modular S-matrix of SU(2)k, and the Ishibashi

states [36] |ℓ〉〉 are characterized by

(Ja
n + J̄a

−n) |ℓ〉〉 = 0, (∀n, ∀a), (5.6)

〈〈ℓ|e−πsHc

e2πizJ3
0
∣∣ℓ′
〉〉

= δℓ,ℓ′χ
(k)
ℓ (z|is). (5.7)
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In this expression χ
(k)
ℓ (z|is) is the SU(2)k character of spin ℓ/2 (C.1), and Hc ≡ L0+L̄0− ck

12

is the closed string Hamiltonian. It is well-known that these ‘maximally symmetric’ bound-

ary states |L〉C describe D-branes wrapped on the conjugacy classes of SU(2), interpreted

as (k− 1) spherical D2 branes (for L = 1, . . . , k− 1)12 and two D0 particles at the poles of

S3 (L = 0, k) [44].

We also introduce ‘T-dualized’ boundary states associated to T ′′ ≡ (eiπJ3
0 , eiπJ̄1

0 ),

|̂L〉C ≡ T ′′|L〉C =

k∑

ℓ=0

S
(k)
L,ℓ√
S

(k)
0,ℓ

|̂ℓ〉〉, (5.8)

|̂ℓ〉〉 ≡ T ′′ |ℓ〉〉 = eiπJ2
0 |ℓ〉〉. (5.9)

which satisfy

(
J3

n − J̄3
−n

)
|̂L〉C = 0,

(
J±

n − J̄∓
−n

)
|̂L〉C = 0 (5.10)

(note that eiπJ3
0 e−iπJ1

0 = eiπJ2
0 ).

Using the overlaps (5.7) and the Verlinde formula

S
(k)
L1,ℓS

(k)
L2,ℓ

S
(k)
0,ℓ

=
k∑

L=0

NL
L1,L2

S
(k)
L,ℓ , (5.11)

where NL
L1,L2

denotes the fusion coefficients of SU(2)k, it is easy to evaluate the cylinder

amplitudes as

C〈L1|e−πsHc |L2〉C = C 〈̂L1|e−πsHc |̂L2〉C =
k∑

L=0

NL
L1,L2

χ
(k)
L (0|it) ≡ ZL1,L2

SU(2)k
(it).

C〈L1|e−πsHc |̂L2〉C = C 〈̂L1|e−πsHc |L2〉C =

k∑

L=0

NL
L1,L2

χ
(k)
L,[1,0](0|it) ≡ ẐL1,L2

SU(2)k
(it) . (5.12)

Here t ≡ 1/s is the open string modulus of the cylinder. χk
L,[1,0](it) are the twisted SU(2)k

characters given in (C.5)).

Now, the bulk branes are constructed similarly to (3.3), (3.8),

|L,D(y0)〉 =
1√
2
(1 + σ)|L〉C ⊗ |D(y0)〉2R

≡ 1√
2

(
|L〉C ⊗ |D(y0)〉2R + |̂L〉C ⊗ |D(y0 + 2πR)〉2R

)
, (5.13)

|L,N(ỹ0)〉 =
1√
2
(1 + σ)|L〉C ⊗ |N(ỹ0)〉2R

≡ 1√
2

(
|L〉C + |̂L〉C

)
⊗ |N(ỹ0)〉2R, (5.14)

12A Dp-brane in our context is a p-dimensional object spreading in p spatial dimensions (not in (p + 1)

spacetime dimensions).
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where σ ≡ T
′′ ⊗ T2πR. The overlaps between the bulk branes are computed as

〈L,D(y0)|e−πsHc |L′,D(y′0)〉 = ZL,L′

SU(2)k
(it)ZDD

2R (it;∆y0) + ẐL,L′

SU(2)k
(it)ZDD

2R (it;∆y0 + 2πR),

〈L,N(ỹ0)|e−πsHc |L′, N(ỹ′0)〉 =
(
ZL,L′

SU(2)k
(it) + ẐL,L′

SU(2)k
(it)
)
ZNN

2R (it;∆ỹ0),

〈L,D(y0)|e−πsHc |L′, N(ỹ′0)〉 =
(
ZL,L′

SU(2)k
(it) + ẐL,L′

SU(2)k
(it)
)
ZDN (it). (5.15)

Again these have obvious geometrical interpretation on the universal cover of the base S1.

This construction may be generalised to include marginal boundary deformation by an

arbitrary SU(2)-rotation on the fibre. Such deformation is taken into account by replacing

the Cardy states |L〉C along the SU(2)-fiber with the deformed Cardy states,

|L,ω〉C ≡ R̄(ω)|L〉C
(
≡ R(ω−1)|L〉C

)
, (5.16)

where the rotations are defined by

R(ω) ≡ exp
∑

a

iθaJ
a
0 , R̄(ω) ≡ exp

∑

a

iθaJ̄
a
0 , (5.17)

with ∀ω ≡ exp
∑

a iθa
σa

2 ∈ SU(2) (σa are the Pauli matrices). This type of boundary states

is characterized by twisted gluing conditions:
(
Ja

n + Ad(ω)baJ̄
b
−n

)
|L,ω〉C = 0. (∀a, ∀n). (5.18)

Then the bulk branes are,

|(L,ω),D(y0)〉bulk =
1√
2
(1 + σ)|L,ω〉C ⊗ |D(y0)〉2R, etc. (5.19)

and the overlaps are calculable by means of the diagonalization technique described in

appendix D. We find, for instance,

〈(L,ω),D(y0)|e−πsHc |(L′, ω′),D(y′0)〉 = ZL,L′

SU(2)k
(it; ξ(ωω

′−1))ZDD
2R (it;∆y0)

+ZL,L′

SU(2)k

(
it; ξ

(
ωe

iπ
2

σ3ω
′−1e−

iπ
2

σ1

))
ZDD

2R (it;∆y0 + 2πR),

(5.20)

where

ZL1,L2

SU(2)k
(it; z) ≡

∑

L

NL
L1,L2

χ
(k)
L (itz|it) e−πk

2
tz2
, (5.21)

and ξ(ω) ∈ [0, 1] (ω ∈ SU(2)) is defined by diagonalization

Ue2πiξ(ω)
σ3
2 U−1 = ω, with some U ∈ SU(2). (5.22)

In the particular case of ω = eiθσ3 , ω′ = eiθ
′σ3 we obtain

〈(L, θ),D(y0)|e−πsHc |(L′, θ′),D(y′0)〉 (5.23)

= ZL,L′

SU(2)k

(
it;
θ − θ′

π

)
ZDD

2R (it;∆y0)+Ẑ
L,L′

SU(2)k
(it)ZDD

2R (it;∆y0 + 2πR).

Other overlaps are evaluated in the same way.
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5.3 Fractional branes in the SU(2) T-fold

The fractional branes (3.34) may also be generalised to SU(2)k fibre at arbitrary level.

Their boundary states are found to be

|F ; (L, θ), ỹ0, η = ±1〉≡ 1√
2
e2iθJ3

0κ|L〉C ⊗|N(ỹ0)〉2R+η
1√
2
e2iθJ3

0κ|L〉RC ⊗|N(ỹ0)〉T2R. (5.24)

Here, κ is the same automorphism (3.26) as before but now for SU(2)k. |L〉C are the SU(2)k
Cardy states (5.5) and |L〉RC are their twisted counterparts, defined explicitly as

|L〉RC ≡
k∑

ℓ=0

e
iπ
2

LS
(k)
L,ℓ√

S
(k)
0,ℓ

|ℓ〉〉R, (5.25)

(J1
n + J̄1

−n) |ℓ〉〉R = 0,
(∀n ∈ Z

)
,

(Ja
r + J̄a

−r) |ℓ〉〉R = 0,

(
∀r ∈ 1

2
+ Z, a = 2, 3

)
,

R〈〈ℓ|e−πsH(c)
e2πizJ1

0
∣∣ℓ′
〉〉R

= δℓ,ℓ′χ
(k)
ℓ,[1,0](z|is). (5.26)

The necessity of the slightly non-trivial phase factor ei
π
2
L will be clarified below. The states

in the base part |N(ỹ)〉2R, |N(ỹ)〉T2R are exactly same as before. The construction and

analysis of the fractional states heavily rely on various properties of the Z2-twisted SU(2)k
characters χ

(k)
ℓ,[α,β](z|τ) (α, β ∈ Z2). See appendix C for their definitions and properties. The

periodicity of the continuous marginal deformation parameter θ is summarized as follows:

(i) k: even

The periodicity of θ is 2π:

|F ; (L, θ + 2π), ỹ0, η〉 = |F ; (L, θ), ỹ0, η〉, (5.27)

and we must treat |F ; (L, θ), ỹ0,+〉 and |F ; (L, θ), ỹ0,−〉 independently. We also note

|F ; (L, θ + π), ỹ0, η〉 =
∣∣F ; (k − L, θ), ỹ0, (−1)Lη

〉
. (5.28)

(ii) k: odd

The periodicity of θ is 4π:

|F ; (L, θ + 4π), ỹ0, η〉 = |F ; (L, θ), ỹ0, η〉, (5.29)

and |F ; (L, θ), ỹ0,+〉 and |F ; (L, θ), ỹ0,−〉 are related as

|F ; (L, θ + 2π), ỹ0, η〉 = |F ; (L, θ), ỹ0,−η〉. (5.30)

We again obtain the same relation as (5.28) when shifting θ → θ + π.
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Computation of the cylinder amplitudes is carried out in the same way as in the S1-fiber

T-fold. With the help of modular transformation formulas of the twisted characters (C.14),

we find

〈F ; (L1, θ), ỹ0, η|e−πsH(c)∣∣F ; (L2, θ
′), ỹ′0, η

′〉 (5.31)

=
1

η(it)

∑

n∈2Z

e
−2πt

“

n
2R

+
∆ỹ0
2π

”2 ∑

L

NL
L1,L2

χ
(k)
L

(
it

∆θ

π
|it
)
e−

kt
2π

(∆θ)2

+
ηη′

η(it)

∑

n∈2Z+1

e
−2πt

“

n
2R

+
∆ỹ0
2π

”2 ∑

L

NL
L1,L2

e−i π
2
(L1−L2+L)χ

(k)
L,[0,1]

(
it

∆θ

π
|it
)
e−

kt
2π

(∆θ)2 ,

〈(L1, θ), N(ỹ0)|e−πsH(c)∣∣F ; (L2, θ
′), ỹ′0, η

′〉 (5.32)

= ZNN
2R (it;∆ỹ0)

∑

L

NL
L1,L2

χ
(k)
L

(
it
α(∆θ)

π
|it
)
e−

kt
2π

α(∆θ)2 ,

〈(L1, θ),D(y0)|e−πsH(c)∣∣F ; (L2, θ
′), ỹ′0, η

′〉 (5.33)

= ZDN (it)
∑

L

NL
L1,L2

χ
(k)
L

(
it
α(∆θ)

π
|it
)
e−

kt
2π

α(∆θ)2 ,

where α(θ) ≡ cos−1
(

cos θ√
2

)
, ∆θ ≡ θ − θ′ and ∆ỹ0 ≡ ỹ0 − ỹ′0 as before. We would like to

conclude this section with several comments on these branes.

1. A non-trivial point is the inclusion of the phase factor ei
π
2
L in (5.25). This fac-

tor is indeed necessary for an appropriate Z2-projection in the open string channel.

Without this factor, the open channel amplitude would be twisted by eiπJ2
0 which

is not involutive: (eiπJ2
0 )2 = e2πiJ2

0 6= 1. See also appendix C. We also note that

ei
π
2
(L1−L2+L) = ±1, because L1 − L2 + L ∈ 2Z when NL

L1,L2
6= 0. Therefore, (5.31)

is correctly Z2-projected and the Cardy condition is satisfied among the boundary

states we defined.

2. An alternative way to construct the boundary states of the fractional branes is to

focus on the primary states of the orbifold SU(2)k/Z2. To this aim it is helpful to

recall the level 1 case which was elaborated in section 3.3. We have 8 primary states

corresponding to irreducible characters

χI(τ) =
1

2

(
χ

(1)
0 (τ) + χ

(1)
0,[0,1](τ)

)
,

χj(τ) =
1

2

(
χ

(1)
0 (τ) − χ

(1)
0,[0,1](τ)

)
,

χi
1(τ) =

1

2

(
χ

(1)
1 (τ) ± χ

(1)
1,[0,1](τ)

)(
≡ 1

2
χ

(1)
1 (τ)

)
,

χi
σ(τ) =

1

2

(
χ

(1)
ℓ,[1,0](τ) + χ

(1)
ℓ,[1,1](τ)

)
,

χi
τ (τ) =

1

2

(
χ

(1)
ℓ,[1,0](τ) − χ

(1)
ℓ,[1,1](τ)

)
, (5.34)
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Sector Untwisted Twisted

Conformal weight 0 1 1
4

1
16

9
16

A1/Z2 primary I j φi
1 σi τ i

ℓ 0 0 1 0, 1 0, 1

s [0],+ [0],− [0],± [1],+ [1],−

Table 2: Primary fields in SU(2)1/Z2.

where i = 1, 2, ℓ = 0, 1 and the notations are as in section 3.3 (see also appendix B

and C). These characters are organized into a collective form,

χ
[α],±
ℓ (τ) =

1

2

(
χ

(1)
ℓ,[α,0]

(τ) ± χ
(1)
ℓ,[α,1]

(τ)
)
. (5.35)

Here, α = 0, 1 and χ
(1)
ℓ,[0,0](τ) ≡ χ

(1)
ℓ (τ). We write them as χs

ℓ(τ), with s = ([0],+),

([0],−), ([1],+), ([1],−) in this order. The correspondence to the A1/Z2 labels is

as shown in table 2. This rational CFT is generalised to SU(2)k/Z2 with arbitrary

k [45, 35]. A natural generalisation of the character formulas is

χ
[α],±
ℓ (τ) =

1

2

(
χ

(k)
ℓ,[α,0](τ) ± χ

(k)
ℓ,[α,1](τ)

)
, (5.36)

with now ℓ = 0, 1, . . . , k. Note that the diagonal sum
∑

ℓ,s |χs
ℓ(τ)|2 of the 4(k + 1)

characters (5.36) gives the fibre part of the partition function (5.2). Modular inversion

of these characters are

χs
ℓ(−1/τ) =

∑

ℓ′,s′

S
(k)
ℓ,ℓ′M

(ℓ,ℓ′)
s,s′ χs′

ℓ′ (τ), (5.37)

with

M
(ℓ,ℓ′)
s,s′ =

1

2




1 1 ei
π
2
ℓ ei

π
2
ℓ

1 1 −ei π
2
ℓ −ei π

2
ℓ

ei
π
2
ℓ′ −ei π

2
ℓ′ e

πi
2 (ℓ+ℓ′− k

2 ) −eπi
2 (ℓ+ℓ′− k

2 )

ei
π
2
ℓ′ −ei π

2
ℓ′ −eπi

2 (ℓ+ℓ′− k
2 ) e

πi
2 (ℓ+ℓ′− k

2 )


 . (5.38)

It is easy to check the unitarity of the modular matrix. We can now construct

the 4(k + 1) Cardy states based on the modular data (5.38) following the standard

procedure of boundary RCFT, yielding the fractional boundary states as in section 3.3

(with the help of the automorphism κ). It is not difficult to see the 4(k + 1) Cardy

states found this way coincide (up to phase factors) with |F ; (L, θ), ỹ0,±〉 with values

of the parameter θ suitably chosen; we find correspondence

L = 0, 1, . . . ,

[
k

2

]
, θ =

nπ

2
, (n = 0, 1, . . . , 3), η = ±1, (for even k),

L = 0, 1, . . . ,

[
k

2

]
, θ =

nπ

2
, (n = 0, 1, . . . , 7), η = +1, (for odd k).(5.39)
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(Only half of the L-values are independent. Recall (5.28).) The factor ei
π
2
L in (5.25)

is again essential in this correspondence. One can also easily check that the results

in section 3.3 are reproduced in the case of k = 1.

3. In the SU(2) WZW there are also B-branes [46] that preserve only a part of the

SU(2) symmetry on the boundary and are interpreted geometrically as D3-branes

or (blown-up) D1-branes, not corresponding to any conjugacy classes. In our SU(2)

T-fold model it seems possible to construct bulk boundary states out of such B-

type SU(2) boundary states, although we have not developed them in full detail.

Exploration of such branes and investigation of completeness of D-branes (in the

sense of [47]) are certainly intriguing problems and we hope to come back in our

future work.

4. Finally, we would like to mention the model described by the asymmetric modular

invariant (5.4). As already pointed out this orbifold is somewhat pathological and

it may not serve as a sensible model of string background. Nevertheless the model

is legitimate as a field theory and it is an interesting problem to look into the

spectrum of D-branes. The construction of bulk branes is essentially same as those

discussed above; the corresponding boundary states are obtained by adding images

of the orbifold action (which is not involutive in this case). In contrast, fractional

branes are absent in this orbifold since the conformal invariance on the boundary

is broken in the twisted sectors (due to the level mismatch). In similar but less

simple examples of asymmetric orbifolds (associated with tori of higher dimensions),

fractional-type branes are often possible due to cancellation of the level-mismatch,

as observed in [18, 19].
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A. Notations and conventions

We first summarize our convention of theta functions. We let q ≡ e2πiτ , y ≡ e2πiz and define

Θm,n(z|τ) =
∑

k∈Z

qn(k+ m
2n)

2

yn(k+ m
2n ), Θ̃m,n(z|τ) =

∑

k∈Z

(−1)kqn(k+ m
2n)

2

yn(k+ m
2n ), (A.1)

η(τ) = q1/24
∞∏

n=1

(1 − qn), (A.2)

θ1(z|τ) = −i
∑

n∈Z

(−1)nyn+ 1
2 q

1
2(n+ 1

2)
2

≡ 2 sin(πz)q
1
8

∞∏

m=1

(1 − qm)(1 − yqm)(1 − y−1qm),
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θ2(z|τ) =
∑

n∈Z

yn+ 1
2 q

1
2(n+ 1

2)
2

≡ 2 cos(πz)q
1
8

∞∏

m=1

(1 − qm)(1 + yqm)(1 + y−1qm),

θ3(z|τ) =
∑

n∈Z

ynq
1
2
n2 ≡

∞∏

m=1

(1 − qm)(1 + yqm− 1
2 )(1 + y−1qm− 1

2 ),

θ4(z|τ) =
∑

n∈Z

(−1)nynq
1
2
n2 ≡

∞∏

m=1

(1 − qm)(1 − yqm− 1
2 )(1 − y−1qm− 1

2 ), (A.3)

and we abbreviate as Θm,n(τ) ≡ Θm,n(0|τ), Θ̃m,n(τ) ≡ Θ̃m,n(0|τ), θi(τ) = θi(0|τ),
i = 2, 3, 4. The second equality in the third line of (A.3) is known as the ‘Jacobi’s triple

product identity’.

The following identities are useful and repeatedly used in this paper:

√
2η(τ)

θ2(τ)
=

Θ̃0,1(τ)

η(τ)
≡ 1

η(τ)
(Θ0,4(τ) − Θ4,4(τ)) ,

√
η(τ)

θ4(τ)
=

Θ1/2,1(τ)

η(τ)
≡ 1

η(τ)
(Θ1,4(τ) + Θ−3,4(τ)) ,

√
η(τ)

θ3(τ)
=

Θ̃1/2,1(τ)

η(τ)
≡ 1

η(τ)
(Θ1,4(τ) − Θ−3,4(τ)) . (A.4)

These are easily proved by using the Jacobi’s triple product identity as well as the Euler

identity:

2η(τ)3 = θ2(τ)θ3(τ)θ4(τ)

(
⇐⇒

∞∏

n=1

(1 + qn)(1 − q2n−1) = 1

)
. (A.5)

B. Rational conformal models at c = 1

Below we collect known facts about c = 1 bosonic CFT which are instrumental in our

T-fold analysis. When the compactification radius is R =
√
p/p′ (p, p′ are coprime positive

integers) the bosonic system on S1 or S1/Z2 exhibits an extended symmetry with respect

to which the theory becomes rational. These symmetries are denoted AN (circle) or AN/Z2

(Z2-orbifold) in [29]. When p = 1 or p′ = 1 the boundary states may be found by applying

the Cardy’s method [43] as the rational CFT becomes diagonal.

B.1 Rational Gaussian models

The torus partition function of a boson ϕ(z, z̄) compactified on an S1 at radius R is

Zcirc
R (τ, τ̄ ) =

R√
Imτ

1

|η(τ)|2
∑

m,w∈Z

exp

{
−πR

2|wτ +m|2
Imτ

}

=
1

|η(τ)|2
∑

k,ℓ∈Z

q
1
4(

k
R

+Rℓ)
2

q̄
1
4
( k

R
−Rℓ)2 . (B.1)
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When the radius takes specific discrete values

R =

√
p

p′
(B.2)

there appears an extended algebra AN generated by operators of anomalous dimensions

h = 1, N,N ,

j = i∂ϕ, V ± = e±2i
√

Nϕ, (B.3)

where

N = pp′ (B.4)

(so p ↔ p′ gives the same chiral algebra, as it should). At N = 1 the A1 is simply SU(2)

at level 1. There are 2N primary operators

φk = eikϕ/
√

N , k = 0, 1, . . . , 2N − 1, (B.5)

whose conformal dimensions are

hk = min

(
k2

4N
,
(2N − k)2

4N

)
. (B.6)

Corresponding character functions are

χk(τ) =
Θk,N(τ)

η(τ)
≡ 1

η(τ)

∑

m∈Z

q(k+2mN)2/4N . (B.7)

The partition function is written using the character functions as,

Zcirc
R (τ, τ̄ ) =

2N−1∑

k=0

χk(τ)χ̄ω0k(τ̄ ). (B.8)

Here, ω0 is defined as

ω0 = pr0 + p′s0 (mod 2N), (B.9)

using two integers r0, s0 satisfying pr0 − p′s0 = 1 (mod 2N). Such a pair (Bezout pair)

(r0, s0) is shown to be unique if restricted to region 1 ≤ r0 ≤ p′ − 1, 1 ≤ s0 ≤ p − 1 and

p′s0 < pr0. The theory is diagonal when p = 1 or p′ = 1.

The modular inversion of the AN characters is

χk(−1/τ) =

2N−1∑

ℓ=0

Skℓχℓ(τ) =
1√
2N

2N−1∑

ℓ=0

e−iπkℓ/Nχℓ(τ), (B.10)

and the fusion rules are found by the Verlinde formula,

φi × φj =
∑

k

Nk
ijφk, Nk

ij = δi+j,k. (B.11)

This simply reflects the conservation of the U(1) charge. The AN Ishibashi states |φℓ〉〉 are

characterised by orthonormal overlaps

〈〈φk|q
1
2
(L0+L0− 1

12
)|φℓ〉〉 = δkℓχk(τ). (B.12)
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When p = 1 or p′ = 1 there are 2N Cardy states that preserve the AN chiral symmetry,

|φk〉C =

2N−1∑

ℓ=0

Skℓ√
S0ℓ

|φℓ〉〉 =
1

4
√

2N

2N−1∑

ℓ=0

e−iπkℓ/N |φℓ〉〉, (B.13)

where Skℓ is the modular inversion matrix. In these cases the Cardy states are the Fourier

transform of the Ishibashi states. The inverse Fourier transformation is

|φℓ〉〉 = (2N)−3/4
2N−1∑

k=0

eiπkℓ/N |φk〉C , (B.14)

where an obvious formula 1
2N

∑2N−1
j=0 eiπjk/N = δ

(2N)
k,0 has been used. When p′ = 1 the 2N

Cardy states may be identified with D-branes |D(x0)〉 at 2N points on the circle, x0 = 0,
πR
N , 2πR

N , · · · , (2N−1)πR
N ,

|φk〉C =

∣∣∣∣D
(
kπR

N

)〉
=

1
4
√

2N2

∑

m∈Z

e−iπmk/N
∞∏

n=1

e
a−nā−n

n |(m, 0)〉, (B.15)

or Neumann states |N(x̃0)〉 with 2N special values of the Wilson line, x̃0 = 0, πα′

RN , 2πα′

RN ,

· · · , (2N−1)πα′

RN on the dual circle,

|φk〉C =

∣∣∣∣N
(
kπα′

RN

)〉
=

1
4
√

2N2

∑

w∈Z

e−iπwk/N
∞∏

n=1

e−
a−nā−n

n |(0, w)〉. (B.16)

See [48, 49] for boundary deformation of these boundaries.

B.2 Rational Gaussian orbifold models

The torus partition function of a boson compactified on an orbifold S1/Z2 at radius R (i.e.

on a line element of length πR) is

Zorb
R (τ, τ̄ ) =

1

2
Zcirc

R (τ, τ̄ ) +

∣∣∣∣
η(τ)

θ2(τ)

∣∣∣∣+
∣∣∣∣
η(τ)

θ3(τ)

∣∣∣∣+
∣∣∣∣
η(τ)

θ4(τ)

∣∣∣∣ . (B.17)

The twisted part does not depend on the radius. When R2 = p/p′ the CFT has an extended

chiral symmetry AN/Z2, generated by (N = pp′ as before)

T, j4 = j4 − 2j∂2j +
3

2
(∂j)2, cos(2

√
Nϕ). (B.18)

Their conformal dimensions are h = 2, 4, N . There are N + 7 primary operators whose

conformal dimensions are

I j φ1
N φ2

N φk σ1 σ2 τ1 τ2

h = 0 1 N/4 N/4 k2/4N 1/16 1/16 9/16 9/16
(B.19)

where k = 1, . . . , N − 1. Their character functions are

I : χI(τ) =
1

2
χ0(τ) +

1

2η(τ)

∑

m∈Z

(−1)mqn2
,
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j : χj(τ) =
1

2
χ0(τ) −

1

2η(τ)

∑

m∈Z

(−1)mqn2
,

φi
N : χi

N (τ) =
1

2
χN (τ),

φk : χk(τ),

σi : χi
σ =

1

η(τ)

∑

m∈Z

q(2m+ 1
4
)2 ,

τ i : χi
τ =

1

η(τ)

∑

m∈Z

q(2m+ 5
4
)2 , (B.20)

where i = 1, 2 and χℓ(τ) are the characters of the S1 theory (B.7). The orbifold partition

function at radius R =
√
p/p′ splits into the AN/Z2 characters,

Zorb
R (τ, τ̄ ) = |χI(τ)|2 + |χj(τ)|2 + |χ1

N (τ)|2 + |χ2
N (τ)|2 +

N−1∑

k=1

χk(τ)χ̄ω0k(τ̄)

+|χ1
σ(τ)|2 + |χ2

σ(τ)|2 + |χ1
τ (τ)|2 + |χ2

τ (τ)|2. (B.21)

Again the theory is not diagonal unless p = 1 or p′ = 1. The Cardy construction of

boundary states in these diagonal cases is discussed for example in [33, 50]. When p = p′ =

1 it turns out that the eight Dirichlet and Neumann states at the orbifold fixed points

D(0,±), D(πR,±), N(0,±), N(π/R,±), (B.22)

may be identified with the A1/Z2 Cardy states

|I〉C , |j〉C , |φi
N 〉C , |σi〉C , |τ i〉C . (B.23)

Boundary deformation of the orbifold models is discussed e.g. in [48, 51].

C. Twisted SU(2)k characters

In this appendix we summarize formulae on the twisted characters of SU(2)k. We start by

recalling the SU(2)k character

χ
(k)
ℓ (z|τ) ≡

Θℓ+1,k+2(z|τ) − Θ−(ℓ+1),k+2(z|τ)
iθ1(z|τ)

, (C.1)

which is a trace over the space of the spin ℓ/2 module (0 ≤ ℓ ≤ k),

Tr
H(k)

ℓ

[
q
L0− k

8(k+2) e2πizJ3
0

]
. (C.2)

Explicit forms of the k = 1 and k = 2 characters are

χ
(1)
ℓ (z|τ) =

Θℓ,1(z|τ)
η(τ)

, (ℓ = 0, 1), (C.3)
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χ
(2)
0 (z|τ) =

1

2

[√
θ3(τ)

η(τ)

θ3(z|τ)
η(τ)

+

√
θ4(τ)

η(τ)

θ4(z|τ)
η(τ)

]
,

χ
(2)
1 (z|τ) =

√
θ2(τ)

2η(τ)

θ2(z|τ)
η(τ)

,

χ
(2)
2 (z|τ) =

1

2

[√
θ3(τ)

η(τ)

θ3(z|τ)
η(τ)

−
√
θ4(τ)

η(τ)

θ4(z|τ)
η(τ)

]
. (C.4)

We introduce the twisted characters by inserting operator e2πiaJ3
0 along the spatial

cycle and e2πibJ3
0 along the temporal cycle of the world-sheet torus (a, b ∈ R). Clearly the

twist by the temporal insertion shifts the parameter z by b. The twist in the spatial cycle

may be taken into account by modular transformations. With an appropriate choice of the

phase normalisation the twisted characters are13

χ̂
(k)
ℓ,(a,b)

(z|τ) ≡ q
k
4
a2
y

k
2
ae2πi k

4
ab χ

(k)
ℓ (z + aτ + b|τ). (C.5)

Their modular transformations are

χ̂
(k)
ℓ,(a,b)(z|τ + 1) = e

2πi
“

hℓ− k
8(k+2)

”

χ̂
(k)
ℓ,(a,b+a)(z|τ), (C.6)

χ̂
(k)
ℓ,(a,b)

(
z

τ
|−1

τ

)
= e

iπkz2

2τ

k∑

ℓ′=0

S
(k)
ℓ,ℓ′ χ̂

(k)
ℓ′,(b,−a)(z|τ), (C.7)

where hℓ = ℓ(ℓ+2)
4(k+2) is the conformal weights of the ground states and S

(k)
ℓ,ℓ′ the modular

S-matrix of SU(2)k,

S
(k)
ℓ,ℓ′ ≡

√
2

k + 2
sin

(
π

(ℓ+ 1)(ℓ′ + 1)

k + 2

)
. (C.8)

It is often convenient to introduce the ‘Z2-twisted characters’ χ
(k)
ℓ,[α,β](τ) whose bound-

ary conditions are parameterized by Z2-valued indices α, β. They are defined as

χ
(k)
ℓ,[0,1](z|τ) ≡ e

iπ
2

ℓ χ̂
(k)

ℓ,(0, 1
2
)
(z|τ),

χ
(k)
ℓ,[1,0](τ) ≡ χ̂

(k)

ℓ,( 1
2
,0)

(z|τ),

χ
(k)
ℓ,[1,1](z|τ) ≡ e−2πi k

16 e
iπ
2

ℓ χ̂
(k)

ℓ,( 1
2
, 1
2
)
(z|τ)

(
≡ e2πi k

16 e−
iπ
2

ℓ χ̂
(k)

ℓ,( 1
2
,− 1

2
)
(z|τ)

)
. (C.9)

Their explicit forms using the theta functions are written as

χ
(k)
ℓ,[0,1](z|τ) =

1

θ2(z|τ)
(
Θ−2(ℓ+1),4(k+2)(z/2|τ) + (−1)ℓΘ2(ℓ+1),4(k+2)(z/2|τ)

+(−1)kΘ−2(ℓ+1)+4(k+2),4(k+2)(z/2|τ)+(−1)k+ℓΘ2(ℓ+1)+4(k+2),4(k+2)(z/2|τ)
)
,

13There is phase ambiguity in defining the characters (see e.g. [31]) and the formula (C.5) is normalised

so that they transform with the standard SU(2) modular transformation laws. We normalise the twisted

characters so that they behave in a modular covariant manner. The choice is not unique; for instance the

convention in [16] slightly differs from ours.
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χ
(k)
ℓ,[1,0](z|τ) =

1

θ4(z|τ)
(
Θ−(ℓ+1)+ k+2

2
,k+2(z|τ) − Θ(ℓ+1)+ k+2

2
,k+2(z|τ)

)

≡ 1

θ4(z|τ)
(
Θ−2(ℓ+1)+(k+2),4(k+2)(z/2|τ) − Θ2(ℓ+1)+(k+2),4(k+2)(z/2|τ)

+Θ−2(ℓ+1)−3(k+2),4(k+2)(z/2|τ) − Θ2(ℓ+1)−3(k+2),4(k+2)(z/2|τ)
)
,

χ
(k)
ℓ,[1,1](z|τ) =

1

θ3(z|τ)
(
Θ−2(ℓ+1)+(k+2),4(k+2)(z/2|τ) + (−1)ℓΘ2(ℓ+1)+(k+2),4(k+2)(z/2|τ)

+(−1)kΘ−2(ℓ+1)−3(k+2),4(k+2)(z/2|τ)+(−1)k+ℓΘ2(ℓ+1)−3(k+2),4(k+2)(z/2|τ)
)
.

(C.10)

Note that, when setting z = 0, we have χ
(k)
k−ℓ,[1,0](0|τ) = χ

(k)
ℓ,[1,0](0|τ), χ

(k)
k−ℓ,[1,1](0|τ) =

χ
(k)
ℓ,[1,1](0|τ), and also χ

(k)
ℓ,[0,1](0|τ) ≡ 0 for an arbitrary odd ℓ.14

Taking level k = 1 and setting z = 0, these characters reduce to the familiar conformal

blocks of the twisted boson:

χ
(1)
0,[0,1](0|τ) =

Θ̃0,1(τ)

η(τ)
=

√
2η(τ)

θ2(τ)
, χ

(1)
1,[0,1](0|τ) = 0,

χ
(1)
0,[1,0](0|τ) = χ

(1)
1,[1,0](0|τ) =

Θ1/2,1(τ)

η(τ)
=

√
η(τ)

θ4(τ)
,

χ
(1)
0,[1,1](0|τ) = χ

(1)
1,[1,1](0|τ) =

Θ̃1/2,1(τ)

η(τ)
=

√
η(τ)

θ3(τ)
. (C.11)

Similarly, for k = 2 we find the system of one twisted boson and one twisted fermion

(θi ≡ θi(0|τ)):

χ
(2)
0,[0,1](0|τ)=

1

2

(√
θ4
η

θ3
η

+

√
θ3
η

θ4
η

)
=

√
2η

θ2

1

2

(√
θ3
η

+

√
θ4
η

)
, χ

(2)
1,[0,1](0|τ) = 0,

χ
(2)
2,[0,1]

(0|τ)= 1

2

(√
θ4
η

θ3
η

−
√
θ3
η

θ4
η

)
=

√
2η

θ2

1

2

(√
θ3
η

−
√
θ4
η

)
, (C.12)

χ
(2)
0,[1,0](0|τ)=χ

(2)
2,[1,0](0|τ)=

√
θ3
η

θ2
2η

=

√
η

θ4

√
θ2
2η
, χ

(2)
1,[1,0](0|τ)=

√
θ2
2η

θ3
η

=

√
η

θ4

√
θ3
η
,

χ
(2)
0,[1,1](0|τ)=χ

(2)
2,[1,1](0|τ)=

√
θ4
η

θ2
2η

=

√
η

θ3

√
θ2
2η
, χ

(2)
1,[1,1](0|τ)=

√
θ2
2η

θ4
η

=

√
η

θ3

√
θ4
η
.

One can immediately see that the ground states of χ
(k)
ℓ,[0,1](z|τ) are the usual spin

ℓ/2 integrable representation with conformal weights hℓ = ℓ(ℓ+2)
4(k+2) . On the other hand the

ground states of χ
(k)
ℓ,[1,0](z|τ) and χ

(k)
ℓ,[1,1](z|τ) are the twisted sector vacuum whose conformal

weight is

ht
ℓ ≡

k − 2 + (k − 2ℓ)2

16(k + 2)
+

1

16
≡ ℓ(ℓ+ 2)

4(k + 2)
− ℓ

4
+

k

16
. (C.13)

14These simple relations are broken when z 6= 0.
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An important difference of the Z2-twisted character χ
(k)
ℓ,[0,1] from χ̂

(k)
ℓ,(0,1/2) is that the

insertion eiπJ3
0 is now replaced with σ̂ ≡ eiπ

ℓ
2 eiπJ3

0 . We note that σ̂ is involutive: σ̂2 =

1, whereas eiπJ3
0 is not. The twisted characters of the other types [α, β] = [1, 0], [1, 1]

are determined in a way consistent with the closedness of modular transformations. The

modular transformations of χ
(k)
ℓ,[α,β]

are summarised as follows:

χ
(k)
ℓ,[0,1](z|τ + 1) = e

2πi
“

hℓ− k
8(k+2)

”

χ
(k)
ℓ,[0,1](z|τ) ,

χ
(k)
ℓ,[0,1]

(
z

τ
| − 1

τ

)
= eiπ

k
2

z2

τ

k∑

ℓ′=0

e
iπ
2

ℓSℓ,ℓ′ χ
(k)
ℓ′,[1,0](z|τ),

χ
(k)
ℓ,[1,0](z|τ + 1) = e

2πi
“

ht
ℓ
− k

8(k+2)

”

χ
(k)
ℓ,[1,1](z|τ) ,

χ
(k)
ℓ,[1,0]

(
z

τ
| − 1

τ

)
= eiπ

k
2

z2

τ

k∑

ℓ′=0

Sℓ,ℓ′e
iπ
2

ℓ′ χ
(k)
ℓ′ [0,1](z|τ) ,

χ
(k)
ℓ,[1,1](z|τ + 1) = e

2πi
“

ht
ℓ
− k

8(k+2)

”

χ
(k)
ℓ,[1,0](z|τ) ,

χ
(k)
ℓ,[1,1]

(
z

τ
| − 1

τ

)
= eiπ

k
2

z2

τ

k∑

ℓ′=0

Sℓ,ℓ′e
πi
2 (ℓ+ℓ′− k

2 ) χ
(k)
ℓ′,[1,1](z|τ) . (C.14)

Note that σ̂ operates on the twisted Hilbert space (α = 1) as σ̂ ≡ e−i π
4
kei

π
2
ℓeiπJ3

0 that is

again involutive,15 σ̂2 = 1. We may thus use the Z2-twisted characters χ
(k)
ℓ,[α,β] as building

blocks of the Z2-orbifold of SU(2)k.

Due to obvious global symmetry one may use eiπJ1
0 or eiπJ2

0 instead of eiπJ3
0 above to

define the same twisted characters χ
(k)
ℓ,[α,β](0|τ). One can also use a more general rotated

current zero mode ρeiπJ3
0 ρ−1, where ρ is any automorphism of SU(2). This is a consequence

of the rotational invariance of the Hamiltonian and the property of trace. When the U(1)

dependence (the angle variable z) is turned on its zero-mode insertion must be rotated

simultaneously, as ρe2πizJ3
0ρ−1. We use these symmetries to compute various overlaps (see

appendix D).

D. Formula for the mixed amplitudes

We derive in this appendix the formula (D.4) that was used in computing cylinder ampli-

tudes of the fibre part. Similar techniques were also utilized e.g. in [42].

We consider a boson compactified on a self-dual S1 and let |N〉 be the Neumann

boundary state,

|N〉 =
1

21/4
(|0〉〉 + |1〉〉) . (D.1)

15This is easily checked using

χℓ,[α,β](z + 1|τ ) = ei π

2
kα(−1)ℓχℓ,[α,β](z|τ ).
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Here |ℓ〉〉 are the SU(2)1 Ishibashi states for the spin ℓ/2 (ℓ = 0, 1) representations. These

Ishibashi states are characterized by gluing conditions and overlaps,

(Ja
n + J̄a

−n)|ℓ〉〉 = 0 , 〈〈ℓ|e−πsHc

e2πizJ3
0 |ℓ′〉〉 = δℓ,ℓ′

Θℓ,1(z|is)
η(is)

. (D.2)

It is then easy to find that

〈N |e−πsHc

e2πizJ3
0 |N〉 =

1√
2

(
Θ0,1(z|is)
η(is)

+
Θ1,1(z|is)
η(is)

)

=
∑

n∈Z

e−2πt(n+ z
2)

2

η(it)
, (t ≡ 1/s) . (D.3)

We wish to show that

〈N |e−πsH(c)
e2iθJ3

0 e2iφJ1
0 |N〉 =

1

η(it)

∑

n∈Z

e
−2πt

“

n+ α(θ,φ)
2π

”2

, (D.4)

where

α(θ, φ) ≡ cos−1 (cos θ cosφ) . (D.5)

If this formula holds one may replace J1
0 with J2

0 because e−
iπ
2

J3
0J1

0 e
iπ
2

J3
0 = J2

0 . One can

show (D.4) by going to the spin 1
2 basis of SU(2) in which the current zero modes are

represented by the Pauli matrices. Then one may write,

e2iθJ3
0 e2iφJ1

0 = ei2θ
σ3
2 ei2φ

σ1
2 =

(
eiθ cosφ ieiθ sinφ

ie−iθ sinφ e−iθ cosφ

)
. (D.6)

This is diagonalised as

(
eiα(θ,φ) 0

0 e−iα(θ,φ)

)
≡ e2iα(θ,φ)

σ3
2 , (D.7)

with α(θ, φ) given by (D.5). We can then use an unitary operator U to write e2iθJ3
0 e2iφJ1

0 =

Ue2iα(θ,φ)J3
0U−1, where the explicit form of U is U = eiθ1(J

a1
0 +J̄

a1
0 )eiθ2(J

a2
0 +J̄

a2
0 ) · · · . The

Neumann state is invariant under the rotation by U because of (D.2). Therefore, us-

ing (D.3), we obtain the desired formula (D.4). It is also easy to generalize the method

described here to SU(2)k at arbitrary k.
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